Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
[ "article:topic", "squeeze theorem", "limit laws", "authorname:openstax", "constant multiple law for limits", "difference law for limits", "product law for limits", "quotient law for limits", "root law for limits", "sum law for limits", "license:ccbyncsa", "showtoc:no" ]
Mathematics LibreTexts

0.0 Special Symbols

  • Page ID
    17413
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

     

     

    \(\displaystyle \lim_{x→−2}(3x^3−2x+7)\).

     

    \[\lim_{x→3}\frac{2x^2−3x+1}{5x+4}=\frac{10}{19}. \nonumber\]

    x→±∞

    \(f(x)=\sqrt{x−3}\).

     

    \(\dfrac{1}{4}\)

     

    \[ \lim_{θ→0}\dfrac{1−\cos θ}{θ}=0 \nonumber \]

    \(M≠0\)

    Contributors

    • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.