Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

7.2E: Exercises for Trigonometric Integrals

  • Page ID
    18278
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Fill in the blank to make a true statement.

    1) \(\sin^2x+\)_______\( =1\)

    Answer:
    \(\cos^2x\)

    2) \(\sec^2x−1=\)_______

    Answer:
    \(\tan^2x\)

    Use an identity to reduce the power of the trigonometric function to a trigonometric function raised to the first power.

    3) \(\sin^2x=\)_______

    Answer:
    \(\dfrac{1−\cos(2x)}{2}\)

    4) \(\cos^2x=\)_______

    Answer:
    \(\dfrac{1+\cos(2x)}{2}\)

    Evaluate each of the following integrals by \(u\)-substitution.

    5) \(\displaystyle ∫\sin^3x\cos x\,dx\)

    Answer:
    \(\displaystyle ∫\sin^3x\cos x\,dx \quad = \quad \frac{\sin^4x}{4}+C\)

    6) \(\displaystyle ∫\sqrt{\cos x}\sin x\,dx\)

    7) \(\displaystyle ∫\tan^5(2x)\sec^2(2x)\,dx\)

    Answer:
    \(\displaystyle ∫\tan^5(2x)\sec^2(2x)\,dx \quad = \quad \tfrac{1}{12}\tan^6(2x)+C\)

    8) \(\displaystyle ∫\sin^7(2x)\cos(2x)\,dx\)

    9) \(\displaystyle ∫\tan(\frac{x}{2})\sec^2(\frac{x}{2})\,dx\)

    Answer:
    \(\displaystyle ∫\tan(\frac{x}{2})\sec^2(\frac{x}{2})\,dx \quad = \quad \tan^2(\frac{x}{2})+C\)

    10) \(\displaystyle ∫\tan^2x\sec^2x\,dx\)

    Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.)

    11) \(\displaystyle ∫\sin^3x\,dx\)

    Answer:
    \(\displaystyle ∫\sin^3x\,dx \quad = \quad −\frac{3\cos x}{4}+\tfrac{1}{12}\cos(3x)+C=−\cos x+\frac{\cos^3x}{3}+C\)

    12) \(\displaystyle ∫\cos^3x\,dx\)

    13) \(\displaystyle ∫\sin x\cos x\,dx\)

    Answer:
    \(\displaystyle ∫\sin x\cos x\,dx \quad = \quad −\tfrac{1}{2}\cos^2x+C\)

    14) \(\displaystyle ∫\cos^5x\,dx\)

    15) \(\displaystyle ∫\sin^5x\cos^2x\,dx\)

    Answer:
    \(\displaystyle ∫\sin^5x\cos^2x\,dx \quad = \quad −\frac{5\cos x}{64}−\tfrac{1}{192}\cos(3x)+\tfrac{3}{320}\cos(5x)−\tfrac{1}{448}\cos(7x)+C\)

    16) \(\displaystyle ∫\sin^3x\cos^3x\,dx\)

    17) \(\displaystyle ∫\sqrt{\sin x}\cos x\,dx\)

    Answer:
    \(\displaystyle ∫\sqrt{\sin x}\cos x\,dx \quad = \quad \tfrac{2}{3}(\sin x)^{2/3}+C\)

    18) \(\displaystyle ∫\sqrt{\sin x}\cos^3x\,dx\)

    19) \(\displaystyle ∫\sec x\tan x\,dx\)

    Answer:
    \(\displaystyle ∫\sec x\tan x\,dx \quad = \quad \sec x+C\)

    20) \(\displaystyle ∫\tan(5x)\,dx\)

    21) \(\displaystyle ∫\tan^2x\sec x\,dx\)

    Answer:
    \(\displaystyle ∫\tan^2x\sec x\,dx \quad = \quad \tfrac{1}{2}\sec x\tan x−\tfrac{1}{2}\ln(\sec x+\tan x)+C\)

    22) \(\displaystyle ∫\tan x\sec^3x\,dx\)

    23) \(\displaystyle ∫\sec^4x\,dx\)

    Answer:
    \(\displaystyle ∫\sec^4x\,dx \quad = \quad \frac{2\tan x}{3}+\tfrac{1}{3}\sec^2 x\tan x=\tan x+\frac{\tan^3x}{3}+C\)

    24) \(\displaystyle ∫\cot x\,dx\)

    25) \(\displaystyle ∫\csc x\,dx\)

    Answer:
    \(\displaystyle ∫\csc x\,dx \quad = \quad −\ln|\cot x+\csc x|+C\)

    26) \(\displaystyle ∫\frac{\tan^3x}{\sqrt{\sec x}}\,dx\)

    For exercises 27 - 28, find a general formula for the integrals.

    27) \(\displaystyle ∫\sin^2ax\cos ax\,dx\)

    Answer:
    \(\displaystyle ∫\sin^2ax\cos ax\,dx \quad = \quad \frac{\sin^3(ax)}{3a}+C\)

    28) \(\displaystyle ∫\sin ax\cos ax\,dx.\)

    Use the double-angle formulas to evaluate the integrals in exercises 29 - 34.

    29) \(\displaystyle ∫^π_0\sin^2x\,dx\)

    Answer:
    \(\displaystyle ∫^π_0\sin^2x\,dx \quad = \quad \frac{π}{2}\)

    30) \(\displaystyle ∫^π_0\sin^4 x\,dx\)

    31) \(\displaystyle ∫\cos^2 3x\,dx\)

    Answer:
    \(\displaystyle ∫\cos^2 3x\,dx \quad = \quad \frac{x}{2}+\tfrac{1}{12}\sin(6x)+C\)

    32) \(\displaystyle ∫\sin^2x\cos^2x\,dx\)

    33) \(\displaystyle ∫\sin^2x\,dx+∫\cos^2x\,dx\)

    Answer:
    \(\displaystyle ∫\sin^2x\,dx+∫\cos^2x\,dx \quad = \quad x+C\)

    34) \(\displaystyle ∫\sin^2 x\cos^2(2x)\,dx\)

    For exercises 35 - 43, evaluate the definite integrals. Express answers in exact form whenever possible.

    35) \(\displaystyle ∫^{2π}_0\cos x\sin 2x\,dx\)

    Answer:
    \(\displaystyle ∫^{2π}_0\cos x\sin 2x\,dx \quad = \quad 0\)

    36) \(\displaystyle ∫^π_0\sin 3x\sin 5x\,dx\)

    37) \(\displaystyle ∫^π_0\cos(99x)\sin(101x)\,dx\)

    Answer:
    \(\displaystyle ∫^π_0\cos(99x)\sin(101x)\,dx \quad = \quad 0\)

    38) \(\displaystyle ∫^π_{−π}\cos^2(3x)\,dx\)

    39) \(\displaystyle ∫^{2π}_0\sin x\sin(2x)\sin(3x)\,dx\)

    Answer:
    \(\displaystyle ∫^{2π}_0\sin x\sin(2x)\sin(3x)\,dx \quad = \quad 0\)

    40) \(\displaystyle ∫^{4π}_0\cos(x/2)\sin(x/2)\,dx\)

    41) \(\displaystyle ∫^{π/3}_{π/6}\frac{\cos^3x}{\sqrt{\sin x}}\,dx\) (Round this answer to three decimal places.)

    Answer:
    \(\displaystyle ∫^{π/3}_{π/6}\frac{\cos^3x}{\sqrt{\sin x}}\,dx \quad \approx \quad 0.239\)

    42) \(\displaystyle ∫^{π/3}_{−π/3}\sqrt{\sec^2x−1}\,dx\)

    43) \(\displaystyle ∫^{π/2}_0\sqrt{1−\cos(2x)}\,dx\)

    Answer:
    \(\displaystyle ∫^{π/2}_0\sqrt{1−\cos(2x)}\,dx \quad = \quad \sqrt{2}\)

    44) Find the area of the region bounded by the graphs of the equations \(y=\sin x,\, y=\sin^3x,\, x=0,\) and \(x=\frac{π}{2}.\)

    45) Find the area of the region bounded by the graphs of the equations \(y=\cos^2x,\, y=\sin^2x,\, x=−\frac{π}{4},\) and \(x=\frac{π}{4}.\)

    Answer:
    \(A = 1 \,\text{unit}^2\)

    46) A particle moves in a straight line with the velocity function \(v(t)=\sin(ωt)\cos^2(ωt).\) Find its position function \(x=f(t)\) if \( f(0)=0.\)

    47) Find the average value of the function \(f(x)=\sin^2x\cos^3x\) over the interval \([−π,π].\)

    Answer:
    \(0\)

    For exercises 48 - 49, solve the differential equations.

    48) \(\dfrac{dy}{\,dx}=\sin^2x.\) The curve passes through point \((0,0).\)

    49) \(\dfrac{dy}{dθ}=\sin^4(πθ)\)

    Answer:
    \(f(x) = \dfrac{3θ}{8}−\tfrac{1}{4π}\sin(2πθ)+\tfrac{1}{32π}\sin(4πθ)+C\)

    50) Find the length of the curve \(y=\ln(\csc x),\, \text{for}\,\tfrac{π}{4}≤x≤\tfrac{π}{2}.\)

    51) Find the length of the curve \(y=\ln(\sin x),\, \text{for}\,\tfrac{π}{3}≤x≤\tfrac{π}{2}.\)

    Answer:
    \(s = \ln(\sqrt{3})\)

    52) Find the volume generated by revolving the curve \(y=\cos(3x)\) about the \(x\)-axis, for \( 0≤x≤\tfrac{π}{36}.\)

    For exercises 53 - 54, use this information: The inner product of two functions \(f\) and \(g\) over \([a,b]\) is defined by \(\displaystyle f(x)⋅g(x)=⟨f,g⟩=∫^b_af⋅g\,dx.\) Two distinct functions \(f\) and \(g\) are said to be orthogonal if \(⟨f,g⟩=0.\)

    53) Show that \({\sin(2x),\, \cos(3x)}\) are orthogonal over the interval \([−π,\, π]\).

    Answer:
    \(\displaystyle ∫^π_{−π}\sin(2x)\cos(3x)\,dx=0\)

    54) Evaluate \(\displaystyle ∫^π_{−π}\sin(mx)\cos(nx)\,dx.\)

    55) Integrate \(y′=\sqrt{\tan x}\sec^4x.\)

    Answer:
    \(\displaystyle y = \int \sqrt{\tan x}\sec^4x \, dx \quad = \quad \tfrac{2}{3}\left(\tan x\right)^{3/2} + \tfrac{2}{7}\left(\tan x\right)^{7/2}+C= \tfrac{2}{21}\left(\tan x\right)^{3/2}\left[ 7 + 3\tan^2 x \right]+C\)

    For each pair of integrals in exercises 56 - 57, determine which one is more difficult to evaluate. Explain your reasoning.

    56) \(\displaystyle ∫\sin^{456}x\cos x\,dx\) or \(\displaystyle ∫\sin^2x\cos^2x\,dx\)

    57) \(\displaystyle ∫\tan^{350}x\sec^2x\,dx\) or \(\displaystyle ∫\tan^{350}x\sec x\,dx\)

    Answer:
    The second integral is more difficult because the first integral is simply a \(u\)-substitution type.

    Contributors

    • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.