Skip to main content
Mathematics LibreTexts

A Brief Table of Laplace Transforms (Trench's)

  • Page ID
    30776
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Table \( \PageIndex{1}\)
    \( \displaystyle f(t)\) \( \displaystyle F(s)\)  
    1 \( \displaystyle{ 1\over s}\) \( \displaystyle (s > 0)\)
    \( \displaystyle t^n\) \( \displaystyle{ n!\over s^{n+1} }\) \( \displaystyle (s > 0)\)
    (\( \displaystyle n = \mbox{ integer } > 0\))    
    \( \displaystyle t^p,\; p > -1\) \( \displaystyle{ \Gamma (p+1) \over s^{(p+1)} }\) \( \displaystyle (s>0)\)
    \( \displaystyle e^{at}\) \( \displaystyle{ 1 \over s-a }\) \( \displaystyle (s > a)\)
    \( \displaystyle t^ne^{at}\) \( \displaystyle{ n! \over (s-a)^{n+1} }\) \( \displaystyle (s > 0)\)
    (\( \displaystyle n= \text{ integer } > 0\))    
    \( \displaystyle \cos \omega t\) \( \displaystyle{ \frac{s}{s^{2}+\omega ^{2}} }\) \( \displaystyle (s > 0)\)
    \( \displaystyle \sin \omega t\) \({ \displaystyle \omega \over s^2+\omega^2 }\) \( \displaystyle (s > 0)\)
    \( \displaystyle e^{\lambda t} \cos \omega t\) \( \displaystyle{ s - \lambda \over (s-\lambda)^2+\omega^2 }\) \( \displaystyle (s > \lambda)\)
    \( \displaystyle e^{\lambda t} \sin \omega t\) \( \displaystyle{ \omega \over (s-\lambda)^2+\omega^2 }\) \( \displaystyle (s > \lambda)\)
    \( \displaystyle \cosh bt\) \( \displaystyle{ s \over s^2-b^2 }\) \( \displaystyle (s > |b|)\)
    \( \displaystyle \sinh bt\) \( \displaystyle{ b \over s^2-b^2 }\) \( \displaystyle (s > |b|)\)
    \( \displaystyle t \cos \omega t\) \( \displaystyle{ s^2-\omega^2 \over (s^2+\omega^2)^2 }\) \( \displaystyle (s>0)\)
    \( \displaystyle t \sin \omega t\) \( \displaystyle{ 2\omega s \over (s^2+\omega^2)^2 }\) \( \displaystyle (s>0)\)
    \( \displaystyle \sin \omega t -\omega t\cos \omega t\) \( \displaystyle{ 2\omega^3\over (s^2+\omega^2)^2 }\) \( \displaystyle (s>0)\)
    \( \displaystyle \omega t - \sin \omega t\) \( \displaystyle{ \omega^3 \over s^2(s^2+\omega^2) }\) \( \displaystyle (s>0)\)
    \( \displaystyle \frac{1}{t}\sin\omega t\) \( \displaystyle{ \arctan \left({\omega \over s}\right) }\) \( \displaystyle (s>0)\)
    \( \displaystyle e^{at}f(t)\) \( \displaystyle{ F(s-a) }\)  
    \( \displaystyle t^kf(t)\) \( \displaystyle (-1)^{k}F^{(k)}(s)\)  
    \( \displaystyle f(\omega t)\) \( \displaystyle{ \frac{1}{\omega}F\left(\frac{s}{\omega } \right), \quad \omega >0 }\)  
    \( \displaystyle u(t-\tau)\) \( \displaystyle{ e^{-\tau s} \over s }\) \( \displaystyle (s>0)\)
    \( \displaystyle u(t-\tau)f(t-\tau)\, (\tau > 0)\) \( \displaystyle{ e^{-\tau s}F(s) }\)  
    \( \displaystyle \displaystyle {\int^t_o f(\tau)g(t-\tau)\, d\tau}\) \( \displaystyle{ F(s) \cdot G(s) }\)  
    \( \displaystyle \delta(t-a)\) \( \displaystyle{ e^{-as} }\) \( \displaystyle (s>0)\)

    This page titled A Brief Table of Laplace Transforms (Trench's) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.