Skip to main content
Mathematics LibreTexts

A Brief Table of Laplace Transforms (Trench's)

  • Page ID
    30776
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Table \( \PageIndex{1}\)
    \( \displaystyle f(t)\) \( \displaystyle F(s)\)
    1 \( \displaystyle{ 1\over s}\) \( \displaystyle (s > 0)\)
    \( \displaystyle t^n\) \( \displaystyle{ n!\over s^{n+1} }\) \( \displaystyle (s > 0)\)
    (\( \displaystyle n = \mbox{ integer } > 0\))    
    \( \displaystyle t^p,\; p > -1\) \( \displaystyle{ \Gamma (p+1) \over s^{(p+1)} }\) \( \displaystyle (s>0)\)
    \( \displaystyle e^{at}\) \( \displaystyle{ 1 \over s-a }\) \( \displaystyle (s > a)\)
    \( \displaystyle t^ne^{at}\) \( \displaystyle{ n! \over (s-a)^{n+1} }\) \( \displaystyle (s > 0)\)
    (\( \displaystyle n= \text{ integer } > 0\))    
    \( \displaystyle \cos \omega t\) \( \displaystyle{ \frac{s}{s^{2}+\omega ^{2}} }\) \( \displaystyle (s > 0)\)
    \( \displaystyle \sin \omega t\) \({ \displaystyle \omega \over s^2+\omega^2 }\) \( \displaystyle (s > 0)\)
    \( \displaystyle e^{\lambda t} \cos \omega t\) \( \displaystyle{ s - \lambda \over (s-\lambda)^2+\omega^2 }\) \( \displaystyle (s > \lambda)\)
    \( \displaystyle e^{\lambda t} \sin \omega t\) \( \displaystyle{ \omega \over (s-\lambda)^2+\omega^2 }\) \( \displaystyle (s > \lambda)\)
    \( \displaystyle \cosh bt\) \( \displaystyle{ s \over s^2-b^2 }\) \( \displaystyle (s > |b|)\)
    \( \displaystyle \sinh bt\) \( \displaystyle{ b \over s^2-b^2 }\) \( \displaystyle (s > |b|)\)
    \( \displaystyle t \cos \omega t\) \( \displaystyle{ s^2-\omega^2 \over (s^2+\omega^2)^2 }\) \( \displaystyle (s>0)\)
    \( \displaystyle t \sin \omega t\) \( \displaystyle{ 2\omega s \over (s^2+\omega^2)^2 }\) \( \displaystyle (s>0)\)
    \( \displaystyle \sin \omega t -\omega t\cos \omega t\) \( \displaystyle{ 2\omega^3\over (s^2+\omega^2)^2 }\) \( \displaystyle (s>0)\)
    \( \displaystyle \omega t - \sin \omega t\) \( \displaystyle{ \omega^3 \over s^2(s^2+\omega^2) }\) \( \displaystyle (s>0)\)
    \( \displaystyle \frac{1}{t}\sin\omega t\) \( \displaystyle{ \arctan \left({\omega \over s}\right) }\) \( \displaystyle (s>0)\)
    \( \displaystyle e^{at}f(t)\) \( \displaystyle{ F(s-a) }\)  
    \( \displaystyle t^kf(t)\) \( \displaystyle (-1)^{k}F^{(k)}(s)\)  
    \( \displaystyle f(\omega t)\) \( \displaystyle{ \frac{1}{\omega}F\left(\frac{s}{\omega } \right), \quad \omega >0 }\)  
    \( \displaystyle u(t-\tau)\) \( \displaystyle{ e^{-\tau s} \over s }\) \( \displaystyle (s>0)\)
    \( \displaystyle u(t-\tau)f(t-\tau)\, (\tau > 0)\) \( \displaystyle{ e^{-\tau s}F(s) }\)  
    \( \displaystyle \displaystyle {\int^t_o f(\tau)g(t-\tau)\, d\tau}\) \( \displaystyle{ F(s) \cdot G(s) }\)  
    \( \displaystyle \delta(t-a)\) \( \displaystyle{ e^{-as} }\) \( \displaystyle (s>0)\)

    This page titled A Brief Table of Laplace Transforms (Trench's) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.