Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.2E: Basic Concepts (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

1. Find the order of the equation.

a. {d^2y\over dx^2}+2 {dy\over dx}\ {d^3y\over dx^3}+x=0

b. y''-3y'+2y=x^7

c. y'-y^7=0

d. y''y-(y')^2=2

2. Verify that the function is a solution of the differential equation on some interval, for any choice of the arbitrary constants appearing in the function.

a. y=ce^{2x}; \quad y'=2y

b. y= {x^2\over3} +{c\over x}; \quad xy'+y=x^2

c. y= {1\over2}+ce^{-x^2}; \quad y'+2xy=x

d. y=(1+ce^{-x^2/2}) (1-ce^{-x^2/2})^{-1} ;\quad 2y'+x(y^2-1)=0

e. y= {\tan\left( {x^3\over3}+c\right)}; \quad y'=x^2(1+y^2)

f. y=(c_1+c_2x)e^x+\sin x+x^2; \quad y''-2y'+y=-2 \cos x+x^2-4x+2

g. y=c_1e^x+c_2x+ {2\over x}; \quad (1-x)y''+xy'- y=4(1-x-x^2)x^{-3}

h. y=x^{-1/2}(c_1\sin x+c_2 \cos x)+4x+8; x^2y''+xy'+ {\left(x^2-{1\over4}\right)}y=4x^3+8x^2+3x-2

3. Find all solutions of the equation.

a. y'=-x

b. y'=-x \sin x

c. y'=x \ln x

d. y''=x \cos x

e. y''=2xe^x

f. y''=2x+\sin x+e^x

g. y'''=-\cos x

h. y'''=-x^2+e^x

i. y'''=7e^{4x}

4. Solve the initial value problem.

a. y'=-xe^x, \quad y(0)=1

b. {y'=x \sin x^2, \quad y\left({\sqrt{\pi\over2}}\right)=1}

c. y'=\tan x, \quad y(\pi/4)=3

d. y''=x^4, \quad y(2)=-1, \quad y'(2)=-1

e. y''=xe^{2x}, \quad y(0)=7, \quad y'(0)=1

f. y''=- x \sin x, \quad y(0)=1, \quad y'(0)=-3

g. y'''=x^2e^x, \quad y(0)=1, \quad y'(0)=-2, \quad y''(0)=3

h. y'''=2+\sin 2x, \quad y(0)=1, \quad y'(0)=-6, \quad y''(0)=3

i. y'''=2x+1, \quad y(2)=1, \quad y'(2)=-4, \quad y''(2)=7

5. Verify that the function is a solution of the initial value problem.

a. y=x\cos x; \quad y'=\cos x-y\tan x, \quad y(\pi/4)= {\pi\over4\sqrt{2}}

b. {y={1+2\ln x\over x^2}+{1\over2}; \quad y'={x^2-2x^2y+2\over x^3}, \quad y(1)={3\over2}}

c. y= {\tan\left({x^2\over2}\right)}; \quad y'=x(1+y^2), \quad y(0)=0

d. {y={2\over x-2}; \quad y'={-y(y+1)\over x}}, \quad y(1)=-2

6. Verify that the function is a solution of the initial value problem.

a. y=x^2(1+\ln x); \quad y''= {3xy'-4y\over x^2}, \quad y(e)=2e^2, \quad y'(e)=5e

b. y= {x^2\over3}+x-1; \quad y''= {x^2-xy'+y+1\over x^2}, \quad y(1)= {1\over3}, \quad y'(1)= {5\over3}

c. y=(1+x^2)^{-1/2}; \quad y''= {(x^2-1)y-x(x^2+1)y'\over (x^2+1)^2}, \quad y(0)=1, \; y'(0)=0

d. y= {x^2\over 1-x}; \quad y''= {2(x+y)(xy'-y)\over x^3}, \quad y(1/2)=1/2, \quad y'(1/2)=3

7. Suppose an object is launched from a point 320 feet above the earth with an initial velocity of 128 ft/sec upward, and the only force acting on it thereafter is gravity. Take g=32 ft/sec^2.

  1. Find the highest altitude attained by the object.
  2. Determine how long it takes for the object to fall to the ground.

8. Let a be a nonzero real number.

  1. Verify that if c is an arbitrary constant then y=(x-c)^a \tag{A} is a solution of y'=ay^{(a-1)/a} \tag{B} on (c,\infty).
  2. Suppose a<0 or a>1. Can you think of a solution of (B) that isn’t of the form (A)?

9. Verify that \begin{aligned}y= \left\{ \begin{array}{cl} e^x-1,& x \ge 0, \\[4pt] 1-e^{-x},& x < 0, \end{array}\right.\end{aligned} \nonumber

is a solution of

\begin{aligned}y'=|y|+1\end{aligned} \nonumber on (-\infty,\infty).

10.

(a) Verify that if c is any real number then y=c^2+cx+2c+1 \tag{A} satisfies y'={-(x+2)+\sqrt{x^2+4x+4y}\over2} \tag{B} on some open interval. Identify the open interval.

(b) Verify that \begin{aligned}y_1={-x(x+4)\over4}\end{aligned} \nonumber also satisfies (B) on some open interval, and identify the open interval. (Note that y_1 can’t be obtained by selecting a value of c in (A).)


This page titled 1.2E: Basic Concepts (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

Support Center

How can we help?