Skip to main content
Mathematics LibreTexts

4.8E: Exercises

  • Page ID
    10859
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    For the following exercises, evaluate the limit.

    1) Evaluate the limit \(\displaystyle \lim_{x→∞}\frac{e^x}{x}\).

    2) Evaluate the limit \(\displaystyle \lim_{x→∞}\frac{e^x}{x^k}\).

    Answer

    \(∞\)

    3) Evaluate the limit \(\displaystyle \lim_{x→∞}\frac{lnx}{x^k}\).

    4) Evaluate the limit \(\displaystyle \lim_{x→a}\frac{x−a}{x^2−a^2}\).

    Answer

    \(\frac{1}{2a}\)

    5) Evaluate the limit \(\displaystyle \lim_{x→a}\frac{x−a}{x^3−a^3}\).

    6) Evaluate the limit \(\displaystyle \lim_{x→a}\frac{x−a}{x^n−a^n}\).

    Answer

    \(\frac{1}{na^{n−1}}\)

    Exercise \(\PageIndex{2}\)

    For the following exercises, determine whether you can apply L’Hôpital’s rule directly. Explain why or why not. Then, indicate if there is some way you can alter the limit so you can apply L’Hôpital’s rule.

    1) \(\displaystyle \lim_{x→0^+}x^2lnx\)

    2) \(\displaystyle \lim_{x→∞}x^{1/x}\)

    Answer

    Cannot apply directly; use logarithms

    3) \(\displaystyle \lim_{x→0}x^{2/x}\)

    4) \(\displaystyle \lim_{x→0}\frac{x^2}{1/x}\)

    Answer

    Cannot apply directly; rewrite as \(\displaystyle \lim_{x→0}x^3\)

    5) \(\displaystyle \lim_{x→∞}\frac{e^x}{x}\)

    Exercise \(\PageIndex{3}\)

    For the following exercises, evaluate the limits with either L’Hôpital’s rule or previously learned methods.

    1) \(\displaystyle \lim_{x→3}\frac{x^2−9}{x−3}\)

    Answer

    \(6\)

    2) \(\displaystyle \lim_{x→3}\frac{x^2−9}{x+3}\)

    3) \(\displaystyle \lim_{x→0}\frac{(1+x)^{−2}−1}{x}\)

    Answer

    \(−2\)

    4) \(\displaystyle \lim_{x→π/2}\frac{cosx}{\frac{π}{2}−x}\)

    5) \(\displaystyle \lim_{x→π}\frac{x−π}{sinx}\)

    Answer

    \(−1\)

    6) \(\displaystyle \lim_{x→1}\frac{x−1}{sinx}\)

    7) \(\displaystyle \lim_{x→0}\frac{(1+x)^n−1}{x}\)

    Answer

    \(n\)

    8) \(\displaystyle \lim_{x→0}\frac{(1+x)^n−1−nx}{x^2}\)

    9) \(\displaystyle \lim_{x→0}\frac{sinx−tanx}{x^3}\)

    Answer

    \(−\frac{1}{2}\)

    Solution

    \(\displaystyle \lim_{x→0}\frac{sinx−tanx}{x^3}=\frac{sin(0)−tan(0)}{0^3}=\left[\dfrac{0}{0}\right].\) By L'hopital's rule, 

    \(\displaystyle \lim_{x→0}\frac{sinx−tanx}{x^3}=\lim_{x→0}\frac{cos(x)-sec^2(x)}{3x^2}=\lim_{x→0}\frac{cos^3(x)-1}{3x^2 \cos^2(x)}=\left[\dfrac{0}{0}\right].\) By L'hopital's rule,

    \(\displaystyle\lim_{x→0}\frac{cos^3(x)-1}{3x^2 \cos^2(x)}=\lim_{x→0}\frac{-3cos^2(x)sin(x)}{3\left(2x cos^2(x)-2x^2 cos(x) sin(x)\right)}= \lim_{x→0}\frac{-cos(x)sin(x)}{\left(2x cos(x)-2x^2 sin(x)\right)}=\left[\dfrac{0}{0}\right].\) By L'hopital's rule,

     \(\displaystyle \lim_{x→0}\frac{-cos(x)sin(x)}{\left(2x cos(x)-2x^2 sin(x)\right)}= \lim_{x→0}\frac{\left(-cos(x)cos(x)+sin(x)sin(x)\right)}{\left(2 cos(x) -2x sin(x) \right)-2 \left(2x sin(x)+x^2 cos (x)\right)}= \dfrac{-1^2}{2}= −\frac{1}{2}\)

     Hence, \(\displaystyle \lim_{x→0}\frac{sinx−tanx}{x^3}= −\frac{1}{2}\).

     

    10) \(\displaystyle \lim_{x→0}\frac{\sqrt{1+x}−\sqrt{1−x}}{x}\)

    11) \(\displaystyle \lim_{x→0}\frac{e^x−x−1}{x^2}\)

    Answer

    \(\frac{1}{2}\)

    12) \(\displaystyle \lim_{x→0}\frac{tanx}{\sqrt{x}}\)

    13) \(\displaystyle \lim_{x→1}\frac{x→1}{lnx}\)

    Answer

    \(1\)

    14) \(\displaystyle \lim_{x→0}(x+1)^{1/x}\)

    15) \(\displaystyle \lim_{x→1}\frac{\sqrt{x}−\sqrt[3]{x}}{x−1}\)

    Answer

    \(\frac{1}{6}\)

    16) \(\displaystyle \lim_{x→0^+}x^{2x}\)

    17) \(\displaystyle \lim_{x→∞}xsin(\frac{1}{x})\)

    Answer

    \(1\)

    18) \(\displaystyle \lim_{x→0}\frac{sinx−x}{x^2}\)

    19) \(\displaystyle \lim_{x→0^+}xln(x^4)\)

    Answer

    \(0\)

    20) \(\displaystyle \lim_{x→∞}(x−e^x)\)

    21) \(\displaystyle \lim_{x→∞}x^2e^{−x}\)

    Answer

    \(0\)

    22) \(\displaystyle \lim_{x→0}\frac{3^x−2^x}{x}\)

    23) \(\displaystyle \lim_{x→0}\frac{1+1/x}{1−1/x}\)

    Answer

    \(−1\)

    24) \(\displaystyle \lim_{x→π/4}(1−tanx)cotx\)

    25) \(\displaystyle \lim_{x→∞}xe^{1/}\)x

    Answer

    \(∞\)

    26) \(\displaystyle \lim_{x→0}x^{1/cosx}\)

    27) \(\displaystyle \lim_{x→0}x^{1/x}\)

    Answer

    \(1\)

    28) \(\displaystyle \lim_{x→0}(1−\frac{1}{x})^x\)

    29) \(\displaystyle \lim_{x→∞}(1−\frac{1}{x})^x\)

    Answer

    \(\frac{1}{e}\)

    Exercise \(\PageIndex{4}\)

    For the following exercises, use a calculator to graph the function and estimate the value of the limit, then use L’Hôpital’s rule to find the limit directly.

    1) \(\displaystyle \lim_{x→0}\frac{e^x−1}{x}\)

    2) \(\displaystyle \lim_{x→0}xsin(\frac{1}{x})\)

    Answer

    \(0\)

    3) \(\displaystyle \lim_{x→1}\frac{x−1}{1−cos(πx)}\)

    4) \(\displaystyle \lim_{x→1}\frac{e^{(x−1)}−1}{x−1}\)

    Answer

    \(1\)

    5) \(\displaystyle \lim_{x→1}\frac{(x−1)^2}{lnx}\)

    6) \(\displaystyle \lim_{x→π}\frac{1+cosx}{sinx}\)

    Answer

    \(0\)

    7) \(\displaystyle \lim_{x→0}(cscx−\frac{1}{x})\)

    8) \(\displaystyle \lim_{x→0^+}tan(x^x)\)

    Answer

    \(tan(1)\)

    9) \(\displaystyle \lim_{x→0^+}\frac{lnx}{sinx}\)

    10) \(\displaystyle \lim_{x→0}\frac{e^x−e^{−x}}{x}\)

    Answer

    \(2\)


    4.8E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?