1.1: System of Linear equations
- Page ID
- 50839
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Introduction to System of Linear equations
Under Construction!
Definition: Linear Equations
\(a_1x_1+a_2x_2+ \cdots+ a_nx_n=b\) is called a linear equation in \(n\) variables \(x_1, x_2, \cdots, x_n\), where \(a_i \in \mathbb{R}\) is the coefficient of \(x_i\), for \(i=1,\cdots , n\) and \(b \in \mathbb{R}\) is the constant term.
Example \(\PageIndex{1}\)
- \(x=2\) lis a inear equation in one variable \(x\).
- \(x+y=3\) is a linear equation in two variables \(x\) and \(y\).
- \(x^2+y=3\) is not a linear equation.
Example \(\PageIndex{2}\)
Find two numbers whose sum is \(12\) and whose positive difference is \(3\).
Solution
Let \(x\) and \(y\) be numbers such that \(x+y =12\) and \(x-y=3\). This is a system of two linear equations in two variables.
Then we can solve these equations by eliminating one variable.
By adding the equations, we get \(2x=15\). Therefore, \(x= \dfrac{15}{2}=7.5\).
Now, \(y=12-x=12-7.5=4.5\).
Thus the numbers are \(7.5\) and \(4.5\). Thus the system has a unique solution.
We can also find the solution using geometry. Remember linear equations in two variables represent lines in two dimensions. From the graph in Figure \(\PageIndex{1}\), we can see that the intersection point is \((7.5,4.5)\).
.png?revision=1&size=bestfit&width=461&height=461)
Definitions:
1. \(a_1x_1+a_2x_2+ \cdots+ a_nx_n=0\) is called a homogeneous linear equation in \(n\) variables \(x_1, x_2, \cdots, x_n\).
2. A system of linear equations in the variables, \(x_{1},x_{2}\cdots ,x_{n}\), is a finite collection of linear equations. \begin{eqnarray*} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}&=&b_{1} \\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}&=&b_{2} \\ \vdots \\ a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}&=&b_{m} \end{eqnarray*} where \(a_{ij}\) and \(b_{j}\) are real numbers. The above is a system of \(m\) equations in the \(n\) variables, \(x_{1},x_{2}\cdots ,x_{n}\). Written more simply in terms of summation notation, the above can be written in the form \[\sum_{j=1}^{n}a_{ij}x_{j}=b_{i}, \text{ }i=1,2,3,\cdots ,m\]
3. A system of linear equations is called a homogeneous system if the constant term of each equation in the system is equal to \(0\). A homogeneous system has the form \[\begin{eqnarray*}{c} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n} &= &0 \\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}&= &0 \\ \vdots \\ a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}&=& 0 \end{eqnarray*}\] where \(a_{ij}\) are scalars and \(x_{i}\) are variable
4. A list \( (s_1,s_2, \cdots,s_n)\) is a solution of the system of linear equations if it satisfies all the linear equations in the system.
Example \(\PageIndex{3}\)
\[\begin{align} &x &+y &&-3z&=3 \\ &2x & -y&& &=4 \\ &4x &+2y &&+3z&=7 \end{align}\nonumber \]
Solutions to System of Linear equations
Possible solutions:
Consider the following systems of two equations in two variables.
\begin{equation} \left.
\begin{aligned} x-y=0\\x+y=0 \end{aligned}
\right\} \end{equation}
\begin{equation} \left. \begin{aligned} x-y=0\\x-y=1\end{aligned}
\right\} \end{equation}
\begin{equation} \left. \begin{aligned}x-y=0\\2x-2y=0\end{aligned}
\right\} \end{equation}
What are the solutions to the above systems.
Definition:
A system of linear equations is called consistent if there exists at least one solution. It is called inconsistent if there is no solution.
Augmented matrix
Definition: Elementary Row operations
The elementary row operations consist of the following
1. Interchange two rows.
2. Multiply a row by a nonzero number.
3. Replace a row with any multiple of another row added to it.