2.3E: Exercises
- Page ID
- 18547
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Trigonometric Substitution
Simplify the expressions in exercises 1 - 5 by writing each one using a single trigonometric function.
Exercise \(\PageIndex{1}\)
\(4−4\sin^2θ\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{2}\)
\(9\sec^2θ−9\)
- Answer
-
\(9\sec^2θ−9 \quad = \quad 9\tan^2θ\)
Exercise \(\PageIndex{3}\)
\(a^2+a^2\tan^2θ\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{4}\)
\(a^2+a^2\tan^2θ\)
- Answer
-
\(a^2+a^2\tan^2θ \quad = \quad a^2\sec^2θ\)
Exercise \(\PageIndex{5}\)
\(16\cos^2θ−16\)
- Answer
-
Add texts here. Do not delete this text first.
Use the technique of completing the square to express each trinomial in exercises 6 - 8 as the square of a binomial.
Exercise \(\PageIndex{6}\)
\(4x^2−4x+1\)
- Answer
-
\( 4(x−\frac{1}{2})^2\)
Exercise \(\PageIndex{7}\)
\(2x^2−8x+3\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{8}\)
\(−x^2−2x+4\)
- Answer
-
\( −(x+1)^2+5\)
In exercises 9 - 28, integrate using the method of trigonometric substitution. Express the final answer in terms of the original variable.
Exercise \(\PageIndex{9}\)
\(\displaystyle ∫\frac{dx}{\sqrt{4−x^2}}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{10}\)
\(\displaystyle ∫\frac{dx}{\sqrt{x^2−a^2}}\)
- Answer
-
\(\displaystyle ∫\frac{dx}{\sqrt{x^2−a^2}} \quad = \quad \ln∣x+\sqrt{−a^2+x^2}∣+C\)
Exercise \(\PageIndex{11}\)
\(\displaystyle ∫\sqrt{4−x^2}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{12}\)
\(\displaystyle ∫\frac{dx}{\sqrt{1+9x^2}}\)
- Answer
-
\(\displaystyle ∫\frac{dx}{\sqrt{1+9x^2}} \quad = \quad \tfrac{1}{3}\ln∣\sqrt{9x^2+1}+3x∣+C\)
Exercise \(\PageIndex{13}\)
\(\displaystyle ∫\frac{x^2\,dx}{\sqrt{1−x^2}}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{14}\)
\(\displaystyle ∫\frac{dx}{x^2\sqrt{1−x^2}}\)
- Answer
-
\(\displaystyle ∫\frac{dx}{x^2\sqrt{1−x^2}} \quad = \quad −\frac{\sqrt{1−x^2}}{x}+C\)
Exercise \(\PageIndex{15}\)
\(\displaystyle ∫\frac{dx}{(1+x^2)^2}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{16}\)
\(\displaystyle ∫\sqrt{x^2+9}\,dx\)
- Answer
-
\(\displaystyle ∫\sqrt{x^2+9}\,dx \quad = \quad 9\left[\frac{x\sqrt{x^2+9}}{18}+\tfrac{1}{2}\ln\left|\frac{\sqrt{x^2+9}}{3}+\frac{x}{3}\right|\right]+C\)
Exercise \(\PageIndex{17}\)
\(\displaystyle ∫\frac{\sqrt{x^2−25}}{x}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{18}\)
\(\displaystyle ∫\frac{θ^3}{\sqrt{9−θ^2}}\,dθ\)
- Answer
-
\(\displaystyle ∫\frac{θ^3dθ}{\sqrt{9−θ^2}}\,dθ \quad = \quad −\tfrac{1}{3}\sqrt{9−θ^2}(18+θ^2)+C\)
Exercise \(\PageIndex{19}\)
\(\displaystyle ∫\frac{dx}{\sqrt{x^6−x^2}}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{20}\)
\(\displaystyle ∫\sqrt{x^6−x^8}\,dx\)
- Answer
-
\(\displaystyle ∫\sqrt{x^6−x^8}\,dx \quad = \quad \frac{(−1+x^2)(2+3x^2)\sqrt{x^6−x^8}}{15x^3}+C\)
Exercise \(\PageIndex{21}\)
\(\displaystyle ∫\frac{dx}{(1+x^2)^{3/2}}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{22}\)
\(\displaystyle ∫\frac{dx}{(x^2−9)^{3/2}}\)
- Answer
-
\(\displaystyle ∫\frac{dx}{(x^2−9)^{3/2}} \quad = \quad −\frac{x}{9−\sqrt{9+x^2}}+C\)
Exercise \(\PageIndex{23}\)
\(\displaystyle ∫\frac{\sqrt{1+x^2}}{x}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{24}\)
\(\displaystyle ∫\frac{x^2}{\sqrt{x^2−1}}\,dx\)
- Answer
-
\(\displaystyle ∫\frac{x^2}{\sqrt{x^2−1}}\,dx \quad = \quad \tfrac{1}{2}(\ln∣x+\sqrt{x^2−1}∣+x\sqrt{x^2−1})+C\)
Exercise \(\PageIndex{25}\)
\(\displaystyle ∫\frac{x^2}{x^2+4}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{26}\)
\(\displaystyle ∫\frac{dx}{x^2\sqrt{x^2+1}}\)
- Answer
-
\(\displaystyle ∫\frac{dx}{x^2\sqrt{x^2+1}} \quad = \quad −\frac{\sqrt{1+x^2}}{x}+C\)
Exercise \(\PageIndex{27}\)
\(\displaystyle ∫\frac{x^2}{\sqrt{1+x^2}}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{28}\)
\(\displaystyle ∫^1_{−1}(1−x^2)^{3/2}\,dx\)
- Answer
-
\(\displaystyle ∫^1_{−1}(1−x^2)^{3/2}\,dx \quad = \quad \tfrac{1}{8}\left(x(5−2x^2)\sqrt{1−x^2}+3\arcsin x\right)+C\)
In exercises 29 - 34, Express the final answers in terms of the variable \(x\).
Exercise \(\PageIndex{29}\)
\(\displaystyle ∫\frac{dx}{\sqrt{x^2−1}}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{30}\)
\(\displaystyle ∫\frac{dx}{x\sqrt{1−x^2}}\)
- Answer
-
\(\displaystyle ∫\frac{dx}{x\sqrt{1−x^2}} \quad = \quad \ln x−\ln∣1+\sqrt{1−x^2}∣+C\)
Exercise \(\PageIndex{31}\)
\(\displaystyle ∫\sqrt{x^2−1}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{32}\)
\(\displaystyle ∫\frac{\sqrt{x^2−1}}{x^2}\,dx\)
- Answer
-
\(\displaystyle ∫\frac{\sqrt{x^2−1}}{x^2}\,dx \quad = \quad −\frac{\sqrt{−1+x^2}}{x}+\ln\left|x+\sqrt{−1+x^2}\right|+C\)
Exercise \(\PageIndex{33}\)
\(\displaystyle ∫\frac{dx}{1−x^2}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{34}\)
\(\displaystyle ∫\frac{\sqrt{1+x^2}}{x^2}\,dx\)
- Answer
-
\(\displaystyle ∫\frac{\sqrt{1+x^2}}{x^2}\,dx \quad = \quad −\frac{\sqrt{1+x^2}}{x}+\text{arcsinh}\, x+C\)
Use the technique of completing the square to evaluate the integrals in exercises 35 - 39.
Exercise \(\PageIndex{35}\)
\(\displaystyle ∫\frac{1}{x^2−6x}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{36}\)
\(\displaystyle ∫\frac{1}{x^2+2x+1}\,dx\)
- Answer
-
\(\displaystyle ∫\frac{1}{x^2+2x+1}\,dx \quad = \quad −\frac{1}{1+x}+C\)
Exercise \(\PageIndex{37}\)
\(\displaystyle ∫\frac{1}{\sqrt{−x^2+2x+8}}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{38}\)
\(\displaystyle ∫\frac{1}{\sqrt{−x^2+10x}}\,dx\)
- Answer
-
\(\displaystyle ∫\frac{1}{\sqrt{−x^2+10x}}\,dx \quad = \quad \frac{2\sqrt{−10+x}\sqrt{x}\ln\left|\sqrt{−10+x}+\sqrt{x}\right|}{\sqrt{(10−x)x}}+C\)
Exercise \(\PageIndex{39}\)
\(\displaystyle ∫\frac{1}{\sqrt{x^2+4x−12}}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{40}\)
Evaluate the integral without using calculus: \(\displaystyle ∫^3_{−3}\sqrt{9−x^2}\,dx.\)
- Answer
-
\(\displaystyle ∫^3_{−3}\sqrt{9−x^2}\,dx \quad = \quad \frac{9π}{2}\); area of a semicircle with radius 3
Exercise \(\PageIndex{41}\)
Find the area enclosed by the ellipse \(\dfrac{x^2}{4}+\dfrac{y^2}{9}=1.\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{42}\)
Evaluate the integral \(\displaystyle ∫\frac{dx}{\sqrt{1−x^2}}\) using two different substitutions. First, let \(x=\cos θ\) and evaluate using trigonometric substitution. Second, let \(x=\sin θ\) and use trigonometric substitution. Are the answers the same?
- Answer
-
\(\displaystyle ∫\frac{dx}{\sqrt{1−x^2}} \quad = \quad \arcsin(x)+C\) is the common answer.
Exercise \(\PageIndex{43}\)
Evaluate the integral \(\displaystyle ∫\frac{dx}{x\sqrt{x^2−1}}\) using the substitution \(x=\sec θ\). Next, evaluate the same integral using the substitution \(x=\csc θ.\) Show that the results are equivalent.
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{44}\)
Evaluate the integral \(\displaystyle ∫\frac{x}{x^2+1}\,dx\) using the form \(\displaystyle ∫\frac{1}{u}\,du\). Next, evaluate the same integral using \(x=\tan θ.\) Are the results the same?
- Answer
-
\(\displaystyle ∫\frac{x}{x^2+1}\,dx \quad = \quad \frac{1}{2}\ln(1+x^2)+C\) is the result using either method.
Exercise \(\PageIndex{45}\)
State the method of integration you would use to evaluate the integral \(\displaystyle ∫x\sqrt{x^2+1}\,dx.\) Why did you choose this method?
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{46}\)
State the method of integration you would use to evaluate the integral \(\displaystyle ∫x^2\sqrt{x^2−1}\,dx.\) Why did you choose this method?
- Answer
-
Use trigonometric substitution. Let \(x=\sec(θ).\)
Exercise \(\PageIndex{47}\)
Evaluate \(\displaystyle ∫^1_{−1}\frac{x}{x^2+1}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{48}\)
Find the length of the arc of the curve over the specified interval: \(y=\ln x,\quad [1,5].\) Round the answer to three decimal places.
- Answer
-
\( s = 4.367\) units
Exercise \(\PageIndex{49}\)
Find the surface area of the solid generated by revolving the region bounded by the graphs of \(y=x^2,\, y=0,\, x=0\), and \(x=\sqrt{2}\) about the \(x\)-axis. (Round the answer to three decimal places).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{50}\)
The region bounded by the graph of \(f(x)=\dfrac{1}{1+x^2}\) and the \(x\)-axis between \(x=0\) and \(x=1\) is revolved about the \(x\)-axis. Find the volume of the solid that is generated.
- Answer
-
\( V = \left(\frac{π^2}{8}+\frac{π}{4}\right) \, \text{units}^3\)
In exercises 51 - 52, solve the initial-value problem for \(y\) as a function of \(x\).
Exercise \(\PageIndex{51}\)
\((x^2+36)\dfrac{dy}{dx}=1, \quad y(6)=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{52}\)
\((64−x^2)\dfrac{dy}{dx}=1, \quad y(0)=3\)
- Answer
-
\( y=\tfrac{1}{16}\ln\left|\dfrac{x+8}{x−8}\right|+3\)
Exercise \(\PageIndex{53}\)
Find the area bounded by \(y=\dfrac{2}{\sqrt{64−4x^2}},\, x=0,\, y=0\), and \(x=2\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{54}\)
An oil storage tank can be described as the volume generated by revolving the area bounded by \(y=\dfrac{16}{\sqrt{64+x^2}},\, x=0,\, y=0,\, x=2\) about the \(x\)-axis. Find the volume of the tank (in cubic meters).
- Answer
-
\(V = 24.6\) m3
Exercise \(\PageIndex{55}\)
During each cycle, the velocity \(v\) (in feet per second) of a robotic welding device is given by \(v=2t−\dfrac{14}{4+t^2}\), where \(t\) is time in seconds. Find the expression for the displacement \(s\) (in feet) as a function of \(t\) if \(s=0\) when \(t=0\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{56}\)
Find the length of the curve \(y=\sqrt{16−x^2}\) between \(x=0\) and \(x=2\).
- Answer
-
\( s = \frac{2π}{3}\) units