Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

4E: Chapter Exercises

  • Page ID
    17492
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Chapter Review Exercises

     Answers are provided to even-numbered problems.

    Exercise \(\PageIndex{1}\) True or false

    True or False? Justify your answer with a proof or a counterexample.

    1) The rectangular coordinates of the point \(\displaystyle (4,\frac{5π}{6})\) are \(\displaystyle (2\sqrt{3},−2).\)

    2) The equations \(\displaystyle x=cosh(3t), y=2sinh(3t)\) represent a hyperbola.

    3) The arc length of the spiral given by \(\displaystyle r=\frac{θ}{2}\) for \(\displaystyle 0≤θ≤3π\) is \(\displaystyle \frac{9}{4}π^3\).

    4) Given \(\displaystyle x=f(t)\) and \(\displaystyle y=g(t)\), if \(\displaystyle \frac{dx}{dy}=\frac{dy}{dx}\), then \(\displaystyle f(t)=g(t)+C,\) where \(\displaystyle C\) is a constant.

    Answer

    Solution 2: True, Solution 4: False. Imagine \(\displaystyle y=t+1, x=−t+1.\)

    Exercise \(\PageIndex{2}\) sketch the parametric curve

    For the following exercises, sketch the parametric curve and eliminate the parameter to find the Cartesian equation of the curve.

    5) \(\displaystyle x=1+t, y=t^2−1, −1≤t≤1\)

    6) \(\displaystyle x=e^t, y=1−e^{3t}, 0≤t≤1\)

    7) \(\displaystyle x=sinθ, y=1−cscθ, 0≤θ≤2π\)

    8) \(\displaystyle x=4cosϕ, y=1−sinϕ, 0≤ϕ≤2π\)

    Answer

    Solution 6: \(\displaystyle y=1−x^3\)

    Solution 8: \(\displaystyle \frac{x^2}{16}+(y−1)^2=1\)

     

    Exercise \(\PageIndex{3}\) sketch the polar curve

    For the following exercises, sketch the polar curve and determine what type of symmetry exists, if any.

    9) \(\displaystyle r=4sin(\frac{θ}{3})\)

    10) \(\displaystyle r=5cos(5θ)\)

    Answer

    Solution 10: Symmetric about polar axis

    Exercise \(\PageIndex{4}\) Polar Equation

    For the following exercises, find the polar equation for the curve given as a Cartesian equation.

    11) \(\displaystyle x+y=5\)

    12) \(\displaystyle y^2=4+x^2\)

    Answer

    Solution 12: \(\displaystyle r^2=\frac{4}{sin^2θ−cos^2θ}\)

    Exercise \(\PageIndex{5}\)  tangent line

    For the following exercises, find the equation of the tangent line to the given curve. Graph both the function and its tangent line.

    13) \(\displaystyle x=ln(t), y=t^2−1, t=1\)

    14) \(\displaystyle r=3+cos(2θ), θ=\frac{3π}{4}\)

    15) Find \(\displaystyle \frac{dy}{dx}, \frac{dx}{dy},\) and \(\displaystyle \frac{d^2x}{dy^2}\) of \(\displaystyle y=(2+e^{−t}), x=1−sin(t)\)

    Answer

    Solution 14: \(\displaystyle y=\frac{3\sqrt{2}}{2}+\frac{1}{5}(x+\frac{3\sqrt{2}}{2})\)

    Exercise \(\PageIndex{6}\) Area

    For the following exercises, find the area of the region.

    16) \(\displaystyle x=t^2, y=ln(t), 0≤t≤e\)

    17) \(\displaystyle r=1−sinθ\) in the first quadrant

    Answer

    Solution 16: \(\displaystyle \frac{e^2}{2}\)

    Exercise \(\PageIndex{7}\) Arc length

    For the following exercises, find the arc length of the curve over the given interval.

    18) \(\displaystyle x=3t+4, y=9t−2, 0≤t≤3\)

    19) \(\displaystyle r=6cosθ, 0≤θ≤2π.\) Check your answer by geometry.

    Answer

    Solution 18: \(\displaystyle 9\sqrt{10}\)

    Exercise \(\PageIndex{8}\) cartesian Equation

    For the following exercises, find the Cartesian equation describing the given shapes.

    20) A parabola with focus \(\displaystyle (2,−5)\) and directrix \(\displaystyle x=6\)

    21) An ellipse with a major axis length of 10 and foci at \(\displaystyle (−7,2)\) and \(\displaystyle (1,2)\)

    22) A hyperbola with vertices at \(\displaystyle (3,−2)\) and \(\displaystyle (−5,−2)\) and foci at \(\displaystyle (−2,−6)\) and \(\displaystyle (−2,4)\)

    Answer

    Solution 20: \(\displaystyle (y+5)^2=−8x+32\), Solution 22: \(\displaystyle \frac{(y+1)^2}{16}−\frac{(x+2)^2}{9}=1\)

    Exercise \(\PageIndex{9}\) Ecencentricity

    For the following exercises, determine the eccentricity and identify the conic. Sketch the conic.

    23) \(\displaystyle r=\frac{6}{1+3cos(θ)}\)

    24) \(\displaystyle r=\frac{4}{3−2cosθ}\)

    25) \(\displaystyle r=\frac{7}{5−5cosθ}\)

    Answer

    Solution 24: \(\displaystyle e=\frac{2}{3}\), ellipse

    Exercise \(\PageIndex{10}\) Application

    26) Determine the Cartesian equation describing the orbit of Pluto, the most eccentric orbit around the Sun. The length of the major axis is 39.26 AU and minor axis is 38.07 AU. What is the eccentricity?

    27) The C/1980 E1 comet was observed in 1980. Given an eccentricity of 1.057 and a perihelion (point of closest approach to the Sun) of 3.364 AU, find the Cartesian equations describing the comet’s trajectory. Are we guaranteed to see this comet again? (Hint: Consider the Sun at point \(\displaystyle (0,0)\).)

    Answer

    Solution 26: \(\displaystyle \frac{y^2}{19.03^2}+\frac{x^2}{19.63^2}=1, e=0.2447\)