Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

4.3E:

  • Page ID
    18598
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Polar Coordinates

    In the following exercises, plot the point whose polar coordinates are given by first constructing the angle \(\displaystyle θ\) and then marking off the distance r along the ray.

    1) \(\displaystyle (3,\frac{π}{6})\)

    Solution:

    2) \(\displaystyle (−2,\frac{5π}{3})\)

    3) \(\displaystyle (0,\frac{7π}{6})\)

    Solution:

    4) \(\displaystyle (−4,\frac{3π}{4})\)

    5) \(\displaystyle (1,\frac{π}{4})\)

    Solution:

    6) \(\displaystyle (2,\frac{5π}{6})\)

    7) \(\displaystyle (1,\frac{π}{2})\)

    Solution:

    For the following exercises, consider the polar graph below. Give two sets of polar coordinates for each point.

    8) Coordinates of point A.

    9) Coordinates of point B.

    Solution: \(\displaystyle B(3,\frac{−π}{3}) B(−3,\frac{2π}{3})\)

    10) Coordinates of point C.

    11) Coordinates of point D.

    Solution: \(\displaystyle D(5,\frac{7π}{6}) D(−5,\frac{π}{6})\)

    For the following exercises, the rectangular coordinates of a point are given. Find two sets of polar coordinates for the point in \(\displaystyle (0,2π]\). Round to three decimal places.

    12) \(\displaystyle (2,2)\)

    13) \(\displaystyle (3,−4) (3, −4)\)

    Solution: \(\displaystyle (5,−0.927)(−5,−0.927+π)\)

    14) \(\displaystyle (8,15)\)

    15) \(\displaystyle (−6,8)\)

    Solution: \(\displaystyle (10,−0.927)(−10,−0.927+π)\)

    16) \(\displaystyle (4,3)\)

    17) \(\displaystyle (3,−\sqrt{3})\)

    Solution: \(\displaystyle 2\sqrt{3},−0.524)(−2\sqrt{3},−0.524+π)\)

    For the following exercises, find rectangular coordinates for the given point in polar coordinates.

    18) \(\displaystyle (2,\frac{5π}{4})\)

    19) \(\displaystyle (−2,\frac{π}{6})\)

    Solution: \(\displaystyle −\sqrt{3},−1)\)

    20) \(\displaystyle (5,\frac{π}{3})\)

    21) \(\displaystyle (1,\frac{7π}{6})\)

    Solution: \(\displaystyle (−\frac{\sqrt{3}}{2},\frac{−1}{2})\)

    22) \(\displaystyle (−3,\frac{3π}{4})\)

    23) \(\displaystyle (0,\frac{π}{2})\)

    Solution: \(\displaystyle (0,0)\)

    24) \(\displaystyle (−4.5,6.5)\)

    For the following exercises, determine whether the graphs of the polar equation are symmetric with respect to the \(\displaystyle x\)-axis, the \(\displaystyle y\) -axis, or the origin.

    25) \(\displaystyle r=3sin(2θ)\)

    Solution: Symmetry with respect to the x-axis, y-axis, and origin.

    26) \(\displaystyle r^2=9cosθ\)

    27) \(\displaystyle r=cos(\frac{θ}{5})\)

    Solution: Symmetric with respect to x-axis only.

    28) \(\displaystyle r=2secθ\)

    29) \(\displaystyle r=1+cosθ\)

    Solution: Symmetry with respect to x-axis only.

    For the following exercises, describe the graph of each polar equation. Confirm each description by converting into a rectangular equation.

    30) \(\displaystyle r=3\)

    31) \(\displaystyle θ=\frac{π}{4}\)

    Solution: Line \(\displaystyle y=x\)

    32) \(\displaystyle r=secθ\)

    33) \(\displaystyle r=cscθ\)

    Solution: \(\displaystyle y=1\)

    For the following exercises, convert the rectangular equation to polar form and sketch its graph.

    34) \(\displaystyle x^2+y^2=16\)

    35) \(\displaystyle x^2−y^2=16\)

    Solution: Hyperbola; polar form \(\displaystyle r^2cos(2θ)=16\) or \(\displaystyle r^2=16secθ.\)

    36) \(\displaystyle x=8\)

    For the following exercises, convert the rectangular equation to polar form and sketch its graph.

    37) \(\displaystyle 3x−y=2\)

    Solution: \(\displaystyle r=\frac{2}{3cosθ−sinθ}\)

    38) \(\displaystyle y^2=4x\)

    For the following exercises, convert the polar equation to rectangular form and sketch its graph.

    39) \(\displaystyle r=4sinθ\)

    40) \(\displaystyle x^2+y^2=4y\)

    Solution:

    41) \(\displaystyle r=6cosθ\)

    42) \(\displaystyle r=θ\)

    Solution: \(\displaystyle xtan\sqrt{x^2+y^2}=y\)

    43) \(\displaystyle r=cotθcscθ\)

    For the following exercises, sketch a graph of the polar equation and identify any symmetry.

    44) \(\displaystyle r=1+sinθ\)

    Solution: y-axis symmetry

    45) \(\displaystyle r=3−2cosθ\)

    46) \(\displaystyle r=2−2sinθ\)

    Solution: y-axis symmetry

    47) \(\displaystyle r=5−4sinθ\)

    48) \(\displaystyle r=3cos(2θ)\)

    Solution: x- and y-axis symmetry and symmetry about the pole

    49) \(\displaystyle r=3sin(2θ)\)

    50) \(\displaystyle r=2cos(3θ)\)

    Solution: x-axis symmetry

    51) \(\displaystyle r=3cos(\frac{θ}{2})\)

    52) \(\displaystyle r^2=4cos(\frac{2}{θ})\)

    Solution: x- and y-axis symmetry and symmetry about the pole

    53) \(\displaystyle r^2=4sinθ\)

    54) \(\displaystyle r=2θ\)

    Solution: no symmetry

    55) [T] The graph of \(\displaystyle r=2cos(2θ)sec(θ).\) is called a strophoid. Use a graphing utility to sketch the graph, and, from the graph, determine the asymptote.

    56) [T] Use a graphing utility and sketch the graph of \(\displaystyle r=\frac{6}{2sinθ−3cosθ}\).

    Solution: a line

    57) [T] Use a graphing utility to graph \(\displaystyle r=\frac{1}{1−cosθ}\).

    58) [T] Use technology to graph \(\displaystyle r=e^{sin(θ)}−2cos(4θ)\).

    Solution:

    59) [T] Use technology to plot \(\displaystyle r=sin(\frac{3θ}{7})\) (use the interval \(\displaystyle 0≤θ≤14π\)).

    60) Without using technology, sketch the polar curve \(\displaystyle θ=\frac{2π}{3}\).

    Solution:

    61) [T] Use a graphing utility to plot \(\displaystyle r=θsinθ\) for \(\displaystyle −π≤θ≤π\).

    62) [T] Use technology to plot \(\displaystyle r=e^{−0.1θ}\) for \(\displaystyle −10≤θ≤10.\)

    Solution:

    63) [T] There is a curve known as the “Black Hole.” Use technology to plot \(\displaystyle r=e^{−0.01θ}\) for \(\displaystyle −100≤θ≤100\).

    64) [T] Use the results of the preceding two problems to explore the graphs of \(\displaystyle r=e^{−0.001θ}\) and \(\displaystyle r=e^{−0.0001θ}\) for \(\displaystyle |θ|>100\).

    Solution: Answers vary. One possibility is the spiral lines become closer together and the total number of spirals increases.