Test 1(Mock Exam)
- Page ID
- 26374
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)These mock exams are provided to help you prepare for Term/Final tests. The best way to use these practice tests is to try the problems as if you were taking the test. Please don't look at the solution until you have attempted the question(s). Only reading through the answers or studying them, will typically not be helpful in preparing since it is too easy to convince yourself that you understand it.
Exercise \(\PageIndex{1}\)
Find the volume of the solid that results in when the region enclosed by \(x=y^2\) and \(2y=2x\) is revolved about the line \(x=-1.\)
- Answer
-
\(\dfrac{7\pi}{15} \mbox{ unit}^3\)
- Solution
-
Point of intersections, we solve \(x=y^2\) and \(2x=2y.\)
Now, \(y^2=y \implies y=0,1.\)
Method I:
Using Disk/Washer method,
\begin{align*} V &=\pi \int_0^1 \left( (y+1)^2-(y^2+1)^2\right) dy \\ &= \pi \int_0^1 (2y-y^2-y^4) dy \\& =\dfrac{7\pi}{15} \mbox{ unit}^3. \end{align*}
Method II:
Using Shell method, \begin{align*}V &=2\pi \int_0^1 (x+1)\left(\sqrt{x}-x \right) dx\\ &=2\pi \int_0^1 \left(x^{3/2}-x^2+x^{1/2}-x \right) dx \\&=2\pi \left(\dfrac{2}{5}x^{5/2}-\dfrac{1}{3}x^3+\dfrac{2}{3}x^{3/2}-\dfrac{1}{2}x^2 \right)\left|_0^1 \right.\\ & =\dfrac{7\pi}{15} \mbox{ unit}^3.\end{align*}
Exercise \(\PageIndex{2}\)
Use cylindrical shells to find the volume generated when the region between the two curves \(y=\sqrt{x} , y=0, x=1,\) and \(x=4\) is revolved about the \(y-\)axis.
- Answer
-
\(\dfrac{62\pi}{5} \mbox{ unit}^3.\)
- Solution
- $$V=2 \pi \int_1^4 x(\sqrt{x}) dx=2 \pi \int_1^4 x^{\frac{3}{2}} dx= \dfrac{4 \pi}{5} x^{\frac{5}{2}}|_1^4= \dfrac{62\pi}{5} \mbox{ unit}^3.$$
Exercise \(\PageIndex{3}\)
Find the exact arc length of the curve \( x=\frac{1}{8}y^4+\frac{1}{4}y^{-2}\) from \(y=4\) to \(y=9.\)
- Answer
-
\(\dfrac{5516}{7}\mbox{ unit}\)
- Solution
-
$$g^{\prime}(y)=\dfrac{1}{2}y^3- \dfrac{1}{2}y^{-3},$$ therefore, $$1+(g^{\prime}(y)^2=1+\left(\dfrac{1}{2}y^3- \dfrac{1}{2}y^{-3}\right)^2=1+\dfrac{1}{2^2}y^6- 2 \left(\dfrac{1}{2} y^3 \right) \left( \dfrac{1}{2}y^{-3} \right)+ \dfrac{1}{2^2}y^{-6}= 1+\dfrac{1}{2^2}y^6- \dfrac{1}{2} + \dfrac{1}{2^2}y^{-6}=\dfrac{1}{2^2}y^6+ \dfrac{1}{2}+ \dfrac{1}{2^2}y^{-6} =\left(\dfrac{1}{2}y^3+ \dfrac{1}{2}y^{-3}\right)^2.$$
Hence $$\mbox{Arc length}=\int_4^9 \sqrt{\left(\dfrac{1}{2}y^3+ \dfrac{1}{2}y^{-3}\right)^2}dy= \int_4^9 \left(\dfrac{1}{2}y^3+ \dfrac{1}{2}y^{-3}\right) dy= \left(\dfrac{1}{8}y^4+ \dfrac{-1}{4}y^{-2}\right)|_4^9= \dfrac{5516}{7}\mbox{ unit}.$$
Exercise \(\PageIndex{4}\)
Find the area of the surface generated by revolving
\(y=\dfrac{e^x+e^{-x}}{2}, 1\leq x\leq 4,\) about the x-axis.
- Answer
-
\(\dfrac{\pi}{2}( (e^{8}+6- e^{-8}-e^{2}+ e^{-2})) \text{units}\)
- Solution
-
We have \( f^{\prime}(x)=\dfrac{1}{2}(e^x- e^{-x}),\) so \( [f^{\prime}(x)]^2=\left( \dfrac{1}{2}(e^x- e^{-x}) \right)^2= \dfrac{1}{4} (e^{2x}-2 + e^{-2x}).\)
Therefore, \( 1+[f^{\prime}(x)]^2 = 1+ \dfrac{1}{4} (e^{2x}-2 + e^{-2x}) = \dfrac{1}{4} (4+e^{2x}-2 + e^{-2x})= \dfrac{1}{4} (e^{2x} +2 + e^{-2x}) = \left(\dfrac{1}{2}(e^x+e^{-x})\right)^2 .\)
\begin{align*} \text{Surface area} &=\int^b_a 2\pi f(x) \sqrt{1+[f^{\prime}(x)]^2}dx \\[5pt] &= \int^{4}_{1} 2\pi \left( \dfrac{1}{2}(e^x+e^{-x}) \right)^2 dx\\[5pt] &= \int^{4}_{1} \pi \dfrac{1}{2}(e^{2x}+2+e^{-2x}) dx\\[5pt] &= \dfrac{\pi}{2} (\dfrac{e^{2x}}{2}+2x- \dfrac{e^{-2x}}{2})|^{4}_{1} \\[5pt] &= \dfrac{\pi}{4}( (e^{8}+16- e^{-8})- (e^{2}+4- e^{-2})) \\[5pt] &= \dfrac{\pi}{4}( (e^{8}+10- e^{-8}-e^{2}+ e^{-2})) \text{units} \end{align*}
Exercise \(\PageIndex{5}\)
Calculate the following integrals:
- \(\displaystyle \int_{1/2}^{\sqrt{3}/2} \sin^{-1}x\ dx\)
- \(\displaystyle \int \sin^2(x) \cos^4(x)\, dx\)
- \(\displaystyle \int \frac{2}{x^2\sqrt{2x^2+50}} \, dx \)
- Answer
-
\(\dfrac{\sqrt{3} \pi}{6}-\dfrac{\pi}{12}+\dfrac{1-\sqrt{3}}{2}\)
\(\dfrac{x}{16}-\dfrac{1}{64}\sin(4x)+\dfrac{1}{48}\sin^3(2x) +C\)
\(\displaystyle \int \frac{2}{x^2\sqrt{2x^2+50}} \ dx = \displaystyle \frac{ -\sqrt{2}}{25} \frac{ \sqrt{x^2+25}}{x} +C.\)
- Solution
-
1. Using integration by parts, let \(u=\sin^{-1}(x)\) and \(dv=dx.\) Then \(du=\dfrac{1}{\sqrt{1-x^2}}\) and \(v=x\). Therefore
\begin{align*}\displaystyle \int_{1/2}^{\sqrt{3}/2} \sin^{-1}x\ dx & = x\sin^{-1}(x) |_{1/2}^{\sqrt{3}/2}- \int_{1/2}^{\sqrt{3}/2} \dfrac{x}{\sqrt{1-x^2}}dx \\&= ( x\sin^{-1}(x)+\sqrt{1-x^2}) |_{1/2}^{\sqrt{3}/2}\\&=\left((\sqrt{3}/2) sin^{-1}(\sqrt{3}/2)+ \sqrt{1-\sqrt{3}/2} \right) -\left((1/2) sin^{-1}(1/2)+ \sqrt{1-1/2} \right) \\&= \dfrac{\sqrt{3} \pi}{6}-\dfrac{\pi}{12}+\dfrac{1-\sqrt{3}}{2}. \end{align*}
2.
\begin{align*}\displaystyle \int \sin^2(x) \cos^4(x)\, dx &= \dfrac{1}{8} \int (1-\cos(2x))(1+\cos(2x))^2 dx\\&=\dfrac{1}{8} \int (1-\cos^2(2x))(1+\cos(2x)) dx\\&=\dfrac{1}{8} \int \sin^2(2x)dx+\dfrac{1}{8} \int \sin^2(2x) \cos(2x)dx\\&= \dfrac{1}{8} \int(1-\cos(4x)) dx+ \dfrac{1}{48}\sin^3(2x)\\&=\dfrac{x}{16}-\dfrac{1}{64}\sin(4x)+\dfrac{1}{48}\sin^3(2x) +C \end{align*}
3.
Let \(x=5 \tan(\theta)\), then \( dx= 5 \sec^2({\theta}) d\theta\) and \( x^2+25=25 \sec^2(\theta).\)
\begin{align*}\displaystyle \int \frac{2}{x^2\sqrt{2x^2+50}} \ dx & = \displaystyle \frac{2}{\sqrt{2}} \int \frac{1}{x^2\sqrt{x^2+25}} dx \\&= \displaystyle \frac{ \sqrt{2}}{25} \int \frac{ \sec^2({\theta})}{ \tan^2(\theta)\sec(\theta)} d\theta \\ &= \displaystyle \frac{ \sqrt{2}}{25} \int \frac{ \sec({\theta})}{ \tan^2(\theta)} d\theta \\& = \displaystyle \frac{ \sqrt{2}}{25} \int \csc({\theta}) \cot(\theta) d\theta\\& = \displaystyle \frac{ -\sqrt{2}}{25} \csc({\theta}) +C .\end{align*}
Since \(\tan(\theta)= \displaystyle \frac{x}{5}, \sin(\theta)= \displaystyle \frac{x}{\sqrt{x^2+25}}. \)
Therefore,
\(\displaystyle \int \frac{2}{x^2\sqrt{2x^2+50}} \ dx = \displaystyle \frac{ -\sqrt{2}}{25} \frac{ \sqrt{x^2+25}}{x} +C.\)
Exercise \(\PageIndex{6}\)
Determine if the following improper integral diverges or converges. If it converges, determine what number it converges to.
\[\int_{e}^{\infty} \frac{dx}{x\ln^3(x)} \nonumber\]
- Answer
-
The integral converges to \( \displaystyle \frac{1}{2}.\)
- Solution
-
\begin{align*}\displaystyle \int_{e}^{\infty} \frac{dx}{x\ln^3(x)} & = \lim_{t \to \infty}\displaystyle \int_{e}^{t} \frac{dx}{x\ln^3(x)} \end{align*}
Let \(u=ln(x),\) then \(du=\displaystyle \frac{1}{x}dx.\) Then
\begin{align*}\displaystyle \int_{e}^{\infty} \frac{dx}{x\ln^3(x)} & = \lim_{t \to \infty}\displaystyle \int_{e}^{t} \frac{dx}{x\ln^3(x)}\\&= \lim_{t \to \infty}\displaystyle \int_{x=e}^{x=t} \frac{du}{u^3} \\&= \lim_{t \to \infty}\displaystyle \int_{x=e}^{x=t} u^{-3}du\\&= \lim_{t \to \infty}\displaystyle \frac{u^{-2}} {-2}|_{x=e}^{x=t}\\&= \lim_{t \to \infty}\displaystyle \frac{-1}{2ln(x)^2}|_{x=e}^{x=t}\\&= \lim_{t \to \infty}\displaystyle \left( \frac{-1}{2ln(t)^2}+\frac{1}{2ln(e)^2} \right)\\&=0+ \displaystyle \frac{1}{2}= \displaystyle \frac{1}{2}.\end{align*}
Hence the integral converges to \( \displaystyle \frac{1}{2}.\)