1 E: Chapter Exercises
- Page ID
- 17138
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
True or False? In the following exercises, justify your answer with a proof or a counterexample.
1. If the radius of convergence for a power series \(\displaystyle \sum_{n=0}^∞a_nx^n\) is \(\displaystyle 5\), then the radius of convergence for the series \(\displaystyle \sum_{n=1}^∞na_nx^{n−1}\) is also \(\displaystyle 5\).
- Answer
-
True
2. Power series can be used to show that the derivative of \(\displaystyle e^x\) is \(\displaystyle e^x\). (Hint: Recall that \(\displaystyle e^x=\sum_{n=0}^∞\frac{1}{n!}x^n.\))
3. For small values of \(\displaystyle x,sinx≈x.\)
- Answer
-
True
4. The radius of convergence for the Maclaurin series of \(\displaystyle f(x)=3^x\) is \(\displaystyle 3\)
Exercise \(\PageIndex{2}\)
In the following exercises, find the radius of convergence and the interval of convergence for the given series.
1. \(\displaystyle \sum_{n=0}^∞n^2(x−1)^n\)
- Answer
-
ROC: \(\displaystyle 1\); IOC: \(\displaystyle (0,2)\)
2. \(\displaystyle \sum_{n=0}^∞\frac{x^n}{n^n}\)
3. \(\displaystyle \sum_{n=0}^∞\frac{3nx^n}{12^n}\)
- Answer
-
ROC: \(\displaystyle 12;\) IOC: \(\displaystyle (−16,8)\)
4. \(\displaystyle \sum_{n=0}^∞\frac{2^n}{e^n}(x−e)^n\)
Exercise \(\PageIndex{3}\)
In the following exercises, find the power series representation for the given function. Determine the radius of convergence and the interval of convergence for that series.
1. \(\displaystyle f(x)=\frac{x^2}{x+3}\)
- Answer
-
\(\displaystyle \sum_{n=0}^∞\frac{(−1)^n}{3^{n+1}}x^n;\) ROC: \(\displaystyle 3\); IOC: \(\displaystyle (−3,3)\)
2. \(\displaystyle f(x)=\frac{8x+2}{2x^2−3x+1}\)
Exercise \(\PageIndex{4}\)
In the following exercises, find the power series for the given function using term-by-term differentiation or integration.
1. \(\displaystyle f(x)=tan^{−1}(2x)\)
- Answer
-
integration: \(\displaystyle \sum_{n=0}^∞\frac{(−1)^n}{2n+1}(2x)^{2n+1}\)
2. \(\displaystyle f(x)=\frac{x}{(2+x^2)^2}\)
Exercise \(\PageIndex{5}\)
In the following exercises, evaluate the Taylor series expansion of degree four for the given function at the specified point. What is the error in the approximation?
1. \(\displaystyle f(x)=x^3−2x^2+4,a=−3\)
- Answer
-
\(\displaystyle p_4(x)=(x+3)^3−11(x+3)^2+39(x+3)−41;\) exact
2. \(\displaystyle f(x)=e^{1/(4x)},a=4\)
Exercise \(\PageIndex{6}\)
In the following exercises, find the Maclaurin series for the given function.
1. \(\displaystyle f(x)=cos(3x)\)
- Answer
-
\(\displaystyle \sum_{n=0}^∞\frac{(−1)^n(3x)^{2n}}{2n!}\)
2. \(\displaystyle f(x)=ln(x+1)\)
Exercise \(\PageIndex{7}\)
In the following exercises, find the Taylor series at the given value.
1. \(\displaystyle f(x)=sinx,a=\frac{π}{2}\)
- Answer
-
\(\displaystyle \sum_{n=0}^∞\frac{(−1)^n}{(2n)!}(x−\frac{π}{2})^{2n}\)
2. \(\displaystyle f(x)=\frac{3}{x},a=1\)
Exercise \(\PageIndex{8}\)
In the following exercises, find the Maclaurin series for the given function.
1. \(\displaystyle f(x)=e^{−x^2}−1\)
- Answer
-
\(\displaystyle \sum_{n=1}^∞\frac{(−1)^n}{n!}x^{2n}\)
2. \(\displaystyle f(x)=cosx−xsinx\)
Exercise \(\PageIndex{9}\)
In the following exercises, find the Maclaurin series for \(\displaystyle F(x)=∫^x_0f(t)dt\) by integrating the Maclaurin series of \(\displaystyle f(x)\) term by term.
1. \(\displaystyle f(x)=\frac{sinx}{x}\)
- Answer
-
\(\displaystyle F(x)=\sum_{n=0}^∞\frac{(−1)^n}{(2n+1)(2n+1)!}x^{2n+1}\)
2. \(\displaystyle f(x)=1−e^x\)
3. Use power series to prove Euler’s formula: \(\displaystyle e^{ix}=cosx+isinx\)
Exercise \(\PageIndex{10}\)
The following exercises consider problems of annuity payments.
1. For annuities with a present value of \(\displaystyle $1\) million, calculate the annual payouts given over \(\displaystyle 25\) years assuming interest rates of \(\displaystyle 1%,5%\), and \(\displaystyle 10%.\)
2. A lottery winner has an annuity that has a present value of \(\displaystyle $10\) million. What interest rate would they need to live on perpetual annual payments of \(\displaystyle $250,000\)?
- Answer
-
\(\displaystyle 2.5%\)
3. Calculate the necessary present value of an annuity in order to support annual payouts of \(\displaystyle $15,000\) given over \(\displaystyle 25\) years assuming interest rates of \(\displaystyle 1%,5%\),and \(\displaystyle 10%.\)