2.1E: Exercises
- Page ID
- 17281
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
(a) Verify that \(y_1=e^{2x}\) and \(y_2=e^{5x}\) are solutions of
\begin{equation}\label{eq:2.1.1}
y''-7y'+10y=0
\end{equation}
on \((-\infty,\infty)\).
(b) Verify that if \(c_1\) and \(c_2\) are arbitrary constants then \(y=c_1e^{2x}+c_2e^{5x}\) is a solution of \eqref{eq:2.1.1} on \((-\infty,\infty)\).
(c) Solve the initial value problem
\begin{eqnarray*}
y''-7y'+10y=0,\quad y(0)=-1,\quad y'(0)=1.
\end{eqnarray*}
(d) Solve the initial value problem
\begin{eqnarray*}
y''-7y'+10y=0,\quad y(0)=k_0,\quad y'(0)=k_1.
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{2}\)
(a) Verify that \(y_1=e^x\cos x\) and \(y_2=e^x\sin x\) are solutions of
\begin{equation}\label{eq:2.1.2}
y''-2y'+2y=0
\end{equation}
on \((-\infty,\infty)\).
(b) Verify that if \(c_1\) and \(c_2\) are arbitrary constants then \(y=c_1e^x\cos x+c_2e^x\sin x\) is a solution of \eqref{eq:2.1.2} on \((-\infty,\infty)\).
(c) Solve the initial value problem
\begin{eqnarray*}
y''-2y'+2y=0,\quad y(0)=3,\quad y'(0)=-2.
\end{eqnarray*}
(d) Solve the initial value problem
\begin{eqnarray*}
y''-2y'+2y=0,\quad y(0)=k_0,\quad y'(0)=k_1.
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{3}\)
(a) Verify that \(y_1=e^x\) and \(y_2=xe^x\) are solutions of
\begin{equation}\label{eq:2.1.3}
y''-2y'+y=0
\end{equation}
on \((-\infty,\infty)\).
(b) Verify that if \(c_1\) and \(c_2\) are arbitrary constants then \(y=e^x(c_1+c_2x)\) is a solution of \eqref{eq:2.1.3} on \((-\infty,\infty)\).
(c) Solve the initial value problem
\begin{eqnarray*}
y''-2y'+y=0,\quad y(0)=7,\quad y'(0)=4.
\end{eqnarray*}
(d) Solve the initial value problem
\begin{eqnarray*}
y''-2y'+y=0,\quad y(0)=k_0,\quad y'(0)=k_1.
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{4}\)
(a) Verify that \(y_1=1/(x-1)\) and \(y_2=1/(x+1)\) are solutions of
\begin{equation}\label{eq:2.1.4}
(x^2-1)y''+4xy'+2y=0
\end{equation}
on \((-\infty,-1)\), \((-1,1)\), and \((1,\infty)\). What is the general solution of \eqref{eq:2.1.4} on each of these intervals?
(b) Solve the initial value problem
\begin{eqnarray*}
(x^2-1)y''+4xy'+2y=0,\quad y(0)=-5,\quad y'(0)=1.
\end{eqnarray*}
What is the interval of validity of the solution?
(c) Graph the solution of the initial value problem.
(d) Verify Abel's formula for \(y_1\) and \(y_2\), with \(x_0=0\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{5}\)
Compute the Wronskians of the given sets of functions.
(a) \(\{1, e^x\}\)
(b)\(\{e^x, e^x \sin x\}\)
(c) \(\{x+1, x^2+2\}\)
(d) \(\{ x^{1/2}, x^{-1/3}\}\)
(e) \(\left\{\displaystyle \frac{\sin x}{x}, \frac{\cos x}{x}\right\}\)
(f) \(\{ x \ln|x|, x^2\ln|x|\}\)
(g) \(\{e^x\cos\sqrt x, e^x\sin\sqrt x\}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{6}\)
Find the Wronskian of a given set \(\{y_1,y_2\}\) of solutions of
\begin{eqnarray*}
y''+3(x^2+1)y'-2y=0,
\end{eqnarray*}
given that \(W(\pi)=0\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{7}\)
Find the Wronskian of a given set \(\{y_1,y_2\}\) of solutions of
\begin{eqnarray*}
(1-x^2)y''-2xy'+\alpha(\alpha+1)y=0,
\end{eqnarray*}
given that \(W(0)=1\). (This is Legendre's equation.)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{8}\)
Find the Wronskian of a given set \(\{y_1,y_2\}\) of solutions of
\begin{eqnarray*}
x^2y''+xy'+(x^2-\nu^2)y=0 ,
\end{eqnarray*}
given that \(W(1)=1\). (This is Bessel's equation.)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{9}\)
(This exercise shows that if you know one nontrivial solution of \(y''+p(x)y'+q(x)y=0\), you can use Abel's formula to find another.)
Suppose \(p\) and \(q\) are continuous and \(y_1\) is a solution of
\begin{equation}\label{eq:2.1.5}
y''+p(x)y'+q(x)y=0
\end{equation}
that has no zeros on \((a,b)\). Let \(P(x)=\int p(x)\,dx\) be any antiderivative of \(p\) on \)(a,b)\).
(a) Show that if \(K\) is an arbitrary nonzero constant and \(y_2\) satisfies
\begin{equation}\label{eq:2.1.6}
y_1y_2'-y_1'y_2=Ke^{-P(x)}
\end{equation}
on \((a,b)\), then \(y_2\) also satisfies \eqref{eq:2.1.5} on \((a,b)\), and \(\{y_1,y_2\}\) is a fundmental set of solutions on \eqref{eq:2.1.5} on \((a,b)\).
(b) Conclude from (a) that if \(y_2=uy_1\) where \(u'=K\displaystyle{e^{-P(x)}\over y_1^2(x)}\), then \(\{y_1,y_2\}\) is a fundamental set of solutions of \eqref{eq:2.1.5} on \((a,b)\).
- Answer
-
Add texts here. Do not delete this text first.
In Exercises \((2.1E.10)\) to \((2.1E.23)\) use the method suggested by Exercise \((2.1E.9)\) to find a second solution \(y_2\) that isn't a constant multiple of the solution \(y_1\). Choose \(K\) conveniently to simplify \(y_2\).
Exercise \(\PageIndex{10}\)
\(y''-2y'-3y=0; \quad y_1=e^{3x}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{11}\)
\(y''-6y'+9y=0; \quad y_1=e^{3x}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{12}\)
\(y''-2ay'+a^2y=0; \mbox{(\(a=\) constant)}; \quad y_1=e^{ax}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{13}\)
\(x^2y''+xy'-y=0; \quad y_1=x\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{14}\)
\(x^2y''-xy'+y=0; \quad y_1=x\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{15}\)
\(x^2y''-(2a-1)xy'+a^2y=0; \mbox{(\(a=\) nonzero constant), \(x>0\);} \quad y_1=x^a\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{16}\)
\(4x^2y''-4xy'+(3-16x^2)y=0; \quad y_1=x^{1/2}e^{2x}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{17}\)
\((x-1)y''-xy'+y=0; \quad y_1=e^x\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{18}\)
\(x^2y''-2xy'+(x^2+2)y=0; \quad y_1=x\cos x\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{19}\)
\(4x^2(\sin x)y''-4x(x\cos x+\sin x)y'+(2x\cos x+3\sin x)y=0; \quad y_1=x^{1/2}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{20}\)
\((3x-1)y''-(3x+2)y'-(6x-8)y=0; \quad y_1=e^{2x}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{21}\)
\((x^2-4)y''+4xy'+2y=0; \quad y_1=\displaystyle{1\over x-2}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{22}\)
\((2x+1)xy''-2(2x^2-1)y'-4(x+1)y=0;\quad y_1=\displaystyle{1\over x}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{23}\)
\((x^2-2x)y''+(2-x^2)y'+(2x-2)y=0;\quad y_1=e^x\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{24}\)
Suppose \(p\) and \(q\) are continuous on an open interval \((a,b)\) and let \(x_0\) be in \((a,b)\). Use Theorem \((2.1.1)\) to show that the only solution of the initial value problem
\begin{eqnarray*}
y''+p(x)y'+q(x)y=0,\quad y(x_0)=0,\quad y'(x_0)=0
\end{eqnarray*}
on \((a,b)\) is the trivial solution \(y\equiv0\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{25}\)
Suppose \(P_0\), \(P_1\), and \(P_2\) are continuous on \((a,b)\) and let \(x_0\) be in \((a,b)\). Show that if either of the following statements is true then \(P_0(x)=0\) for some \(x\) in \((a,b)\).
(a) The initial value problem
\begin{eqnarray*}
P_0(x)y''+P_1(x)y'+P_2(x)y=0,\quad y(x_0)=k_0,\quad y'(x_0)=k_1
\end{eqnarray*}
has more than one solution on \((a,b)\).
(b) The initial value problem
\begin{eqnarray*}
P_0(x)y''+P_1(x)y'+P_2(x)y=0,\quad y(x_0)=0,\quad y'(x_0)=0
\end{eqnarray*}
has a nontrivial solution on \((a,b)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{26}\)
Suppose \(p\) and \(q\) are continuous on \((a,b)\) and \(y_1\) and \(y_2\) are solutions of
\begin{equation}\label{eq:2.1.7}
y''+p(x)y'+q(x)y=0
\end{equation}
on \((a,b)\). Let
\begin{eqnarray*}
z_1=\alpha y_1+\beta y_2\quad \mbox{and} \quad z_2=\gamma y_1+\delta y_2,
\end{eqnarray*}
where \(\alpha\), \(\beta\), \(\gamma\), and \(\delta\) are constants. Show that if \(\{z_1,z_2\}\) is a fundamental set of solutions of \eqref{eq:2.1.7} on \((a,b)\) then so is \(\{y_1,y_2\}\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{27}\)
Suppose \(p\) and \(q\) are continuous on \((a,b)\) and \(\{y_1,y_2\}\) is a fundamental set of solutions of
\begin{equation}\label{eq:2.1.8}
y''+p(x)y'+q(x)y=0
\end{equation}
on \((a,b)\). Let
\begin{eqnarray*}
z_1=\alpha y_1+\beta y_2\quad \mbox{and} \quad z_2=\gamma y_1+\delta y_2,
\end{eqnarray*}
where \(\alpha,\beta,\gamma\), and \(\delta\) are constants. Show that \(\{z_1,z_2\}\) is a fundamental set of solutions of \eqref{eq:2.1.8} on \((a,b)\) if and only if \( \alpha\gamma-\beta\delta\ne0\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{28}\)
Suppose \(y_1\) is differentiable on an interval \((a,b)\) and \(y_2=ky_1\), where \(k\) is a constant. Show that the Wronskian of \(\{y_1,y_2\}\) is identically zero on \((a,b)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{29}\)
Let
\begin{eqnarray*}
y_1=x^3 \quad \mbox{ and } \quad y_2=\left\{\begin{array}{rl}
x^3,&x\ge 0,\\ -x^3,&x<0.\end{array}\right.
\end{eqnarray*}
(a) Show that the Wronskian of \(\{y_1,y_2\}\) is defined and identically zero on \((-\infty,\infty)\).
(b) Suppose \(a<0<b\). Show that \(\{y_1,y_2\}\) is linearly independent on \((a,b)\).
(c) Use Exercise \((2.1E.25)\) part (b) to show that these results don't contradict Theorem \((2.1.5)\), because neither \(y_1\) nor \(y_2\) can be a solution of an equation
\begin{eqnarray*}
y''+p(x)y'+q(x)y=0
\end{eqnarray*}
on \((a,b)\) if \(p\) and \(q\) are continuous on \((a,b)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{30}\)
Suppose \(p\) and \(q\) are continuous on \((a,b)\) and \(\{y_1,y_2\}\) is a set of solutions of
\begin{eqnarray*}
y''+p(x)y'+q(x)y=0
\end{eqnarray*}
on \((a,b)\) such that either \(y_1(x_0)=y_2(x_0)=0\) or \(y_1'(x_0)=y_2'(x_0)=0\) for some \(x_0\) in \((a,b)\). Show that \(\{y_1,y_2\}\) is linearly dependent on \((a,b)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{31}\)
Suppose \(p\) and \(q\) are continuous on \((a,b)\) and \(\{y_1,y_2\}\) is a fundamental set of solutions of
\begin{eqnarray*}
y''+p(x)y'+q(x)y=0
\end{eqnarray*}
on \((a,b)\). Show that if \(y_1(x_1)=y_1(x_2)=0\), where \(a<x_1<x_2<b\), then \(y_2(x)=0\) for some \(x\) in \((x_1,x_2)\).
Hint: Show that if \(y_2\) has no zeros in \((x_1,x_2)\), then \(y_1/y_2\) is either strictly increasing or strictly decreasing on \((x_1,x_2)\), and deduce a contradiction.
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{32}\)
Suppose \(p\) and \(q\) are continuous on \((a,b)\) and every solution of
\begin{equation}\label{eq:2.1.9}
y''+p(x)y'+q(x)y=0
\end{equation}
on \((a,b)\) can be written as a linear combination of the twice differentiable functions \(\{y_1,y_2\}\). Use Theorem \((2.1.1)\) to show that \(y_1\) and \(y_2\) are themselves solutions of \eqref{eq:2.1.9} on \((a,b)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{33}\)
Suppose \(p_1\), \(p_2\), \(q_1\), and \(q_2\) are continuous on \((a,b)\) and the equations
\begin{eqnarray*}
y''+p_1(x)y'+q_1(x)y=0 \quad \mbox{and} \quad y''+p_2(x)y'+q_2(x)y=0
\end{eqnarray*}
have the same solutions on \((a,b)\). Show that \(p_1=p_2\) and \(q_1=q_2\) on \((a,b)\).
Hint: Use Abel's formula.
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{34}\)
(For this exercise you have to know about \(3\times 3\) determinants.)
Show that if \(y_1\) and \(y_2\) are twice continuously differentiable on \((a,b)\) and the Wronskian \(W\) of \(\{y_1,y_2\}\) has no zeros in \((a,b)\) then the equation
\begin{eqnarray*}
\frac{1}{W} \left| \begin{array}{ccc}
y & y_1 & y_2 \\
y' & y'_1 & y'_2 \\
y'' & y_1'' & y_2''
\end{array} \right|=0
\end{eqnarray*}
can be written as
\begin{equation}\label{eq:2.1.10}
y''+p(x)y'+q(x)y=0,
\end{equation}
where \(p\) and \(q\) are continuous on \((a,b)\) and \(\{y_1,y_2\}\) is a fundamental set of solutions of \eqref{eq:2.1.10} on \((a,b)\).
Hint: Expand the determinant by cofactors of its first column.
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{35}\)
Use the method suggested by Exercise \((2.1E.34)\) to find a linear homogeneous equation for which the given functions form a fundamental set of solutions on some interval.
(a) \(e^x \cos 2x, \quad e^x \sin 2x\)
(b) \(x, \quad e^{2x}\)
(c) \(x, \quad x \ln x\)
(d) \(\cos (\ln x), \quad \sin (\ln x)\)
(e) \(\cosh x, \quad \sinh x\)
(f) \(x^2-1, \quad x^2+1\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{36}\)
Suppose \(p\) and \(q\) are continuous on \((a,b)\) and \(\{y_1,y_2\}\) is a fundamental set of solutions of
\begin{equation}\label{eq:2.1E.11}
y''+p(x)y'+q(x)y=0
\end{equation}
on \((a,b)\). Show that if \(y\) is a solution of \eqref{eq:2.1E.11} on \((a,b)\), there's exactly one way to choose \(c_1\) and \(c_2\) so that \(y=c_1y_1+c_2y_2\) on \((a,b)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{37}\)
Suppose \(p\) and \(q\) are continuous on \((a,b)\) and \(x_0\) is in \((a,b)\). Let \(y_1\) and \(y_2\) be the solutions of
\begin{equation}\label{eq:2.1E.12}
y''+p(x)y'+q(x)y=0
\end{equation}
such that
\begin{eqnarray*}
y_1(x_0)=1, \quad y'_1(x_0)=0\quad \mbox{and} \quad y_2(x_0)=0,\; y'_2(x_0)=1.
\end{eqnarray*}
(Theorem \((2.1.1)\) implies that each of these initial value problems has a unique solution on \((a,b)\).)
(a) Show that \(\{y_1,y_2\}\) is linearly independent on \((a,b)\).
(b) Show that an arbitrary solution \(y\) of \eqref{eq:2.1E.12} on \(a,b)\) can be written as \(y=y(x_0)y_1+y'(x_0)y_2\).
(c) Express the solution of the initial value problem
\begin{eqnarray*}
y''+p(x)y'+q(x)y=0,\quad y(x_0)=k_0,\quad y'(x_0)=k_1
\end{eqnarray*}
as a linear combination of \(y_1\) and \(y_2\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{38}\)
Find solutions \(y_1\) and \(y_2\) of the equation \(y''=0\) that satisfy the initial conditions
\begin{eqnarray*}
y_1(x_0)=1, \quad y'_1(x_0)=0 \quad \mbox{ and } \quad y_2(x_0)=0, \quad y'_2(x_0)=1.
\end{eqnarray*}
Then use Exercise \((2.1E.37)\) (c) to write the solution of the initial value problem
\begin{eqnarray*}
y''=0,\quad y(0)=k_0,\quad y'(0)=k_1
\end{eqnarray*}
as a linear combination of \(y_1\) and \(y_2\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{39}\)
Let \(x_0\) be an arbitrary real number. Given Example \((2.1.1)\) that \(e^x\) and \(e^{-x}\) are solutions of \(y''-y=0\), find solutions \(y_1\) and \(y_2\) of \(y''-y=0\) such that
\begin{eqnarray*}
y_1(x_0)=1, \quad y'_1(x_0)=0 \quad \mbox{and} \quad y_2(x_0)=0,\; y'_2(x_0)=1.
\end{eqnarray*}
Then use Exercise \((2.1E.37)\) (c) to write the solution of the initial value problem
\begin{eqnarray*}
y''-y=0,\quad y(x_0)=k_0,\quad y'(x_0)=k_1
\end{eqnarray*}
as a linear combination of \(y_1\) and \(y_2\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{40}\)
Let \(x_0\) be an arbitrary real number. Given Example \((2.1.2)\) that \(\cos\omega x\) and \(\sin\omega x\) are solutions of \(y''+\omega^2y=0\), find solutions of \(y''+\omega^2y=0$\) such that
\begin{eqnarray*}
y_1(x_0)=1, \quad y'_1(x_0)=0 \quad \mbox{and} \quad y_2(x_0)=0,\; y'_2(x_0)=1.
\end{eqnarray*}
Then use Exercise \((2.1E.37)\) (c) to write the solution of the initial value problem
\begin{eqnarray*}
y''+\omega^2y=0,\quad y(x_0)=k_0,\quad y'(x_0)=k_1
\end{eqnarray*}
as a linear combination of \(y_1\) and \(y_2\). Use the identities
\begin{eqnarray*}
\cos(A+B)&=&\cos A\cos B-\sin A\sin B\\
\sin(A+B)&=&\sin A\cos B+\cos A\sin B
\end{eqnarray*}
to simplify your expressions for \(y_1\), \(y_2\), and \(y\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{41}\)
Recall from Exercise \((2.1E.4)\) that \(1/(x-1)\) and \(1/(x+1)\) are solutions of
\begin{equation}\label{eq:2.1E.13}
(x^2-1)y''+4xy'+2y=0
\end{equation}
on \((-1,1)\). Find solutions of \eqref{eq:2.1E.13} such that
\begin{eqnarray*}
y_1(0)=1, \quad y'_1(0)=0 \quad \mbox{and} \quad y_2(0)=0,\; y'_2(0)=1.
\end{eqnarray*}
Then use Exercise \((2.1E.37)\) (c) to write the solution of initial value problem
\begin{eqnarray*}
(x^2-1)y''+4xy'+2y=0,\quad y(0)=k_0,\quad y'(0)=k_1
\end{eqnarray*}
as a linear combination of \(y_1\) and \(y_2\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{42}\)
(a) Verify that \(y_1=x^2\) and \(y_2=x^3\) satisfy
\begin{equation}\label{eq:2.1E.14}
x^2y''-4xy'+6y=0
\end{equation}
on \((-\infty,\infty)\) and that \(\{y_1,y_2\}\) is a fundamental set of solutions of \eqref{eq:2.1E.14} on \((-\infty,0)\) and \((0,\infty)\).
(b) Let \(a_1\), \(a_2\), \(b_1\), and \(b_2\) be constants. Show that
\begin{eqnarray*}
y=\left\{\begin{array}{rr}
a_1x^2+a_2x^3,&x\ge 0,\\
b_1x^2+b_2x^3,&x<0\phantom{,}
\end{array}\right.
\end{eqnarray*}
is a solution of \eqref{eq:2.1E.14} on \((-\infty,\infty)\) if and only if \(a_1=b_1\). From this, justify the statement that \(y\) is a solution of \eqref{eq:2.1E.14} on \((-\infty,\infty)\) if and only if
\begin{eqnarray*}
y=\left\{\begin{array}{rr}
c_1x^2+c_2x^3,&x\ge 0,\\
c_1x^2+c_3x^3,&x<0,
\end{array}\right.
\end{eqnarray*}
where \(c_1\), \(c_2\), and \(c_3\) are arbitrary constants.
(c) For what values of \(k_0\) and \(k_1\) does the initial value problem
\begin{eqnarray*}
x^2y''-4xy'+6y=0,\quad y(0)=k_0,\quad y'(0)=k_1
\end{eqnarray*}
have a solution? What are the solutions?
(d) Show that if \(x_0\ne0\) and \(k_0,k_1\) are arbitrary constants, the initial value problem
\begin{equation}\label{eq:2.1E.15}
x^2y''-4xy'+6y=0,\quad y(x_0)=k_0,\quad y'(x_0)=k_1
\end{equation}
has infinitely many solutions on \((-\infty,\infty)\). On what interval does \eqref{eq:2.1E.15} have a unique solution?
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{43}\)
(a) Verify that \(y_1=x\) and \(y_2=x^2\) satisfy
\begin{equation}\label{eq:2.1E.16}
x^2y''-2xy'+2y=0
\end{equation}
on \((-\infty,\infty)\) and that \(\{y_1,y_2\}\) is a fundamental set of solutions of \eqref{eq:2.1E.16} on \((-\infty,0)\) and \((0,\infty)\).
(b) Let \(a_1\), \(a_2\), \(b_1\), and \(b_2\) be constants. Show that
\begin{eqnarray*}
y=\left\{\begin{array}{rr}
a_1x+a_2x^2,&x\ge 0,\\
b_1x+b_2x^2,&x<0\phantom{,}
\end{array}\right.
\end{eqnarray*}
is a solution of \eqref{eq:2.1E.16} on \((-\infty,\infty)\) if and only if \(a_1=b_1\) and \(a_2=b_2\). From this, justify the statement that the general solution of \eqref{eq:2.1E.16} on \((-\infty,\infty)\) is \(y=c_1x+c_2x^2\), where \(c_1\) and \(c_2\) are arbitrary constants.
(c) For what values of \(k_0\) and \(k_1\) does the initial value problem
\begin{eqnarray*}
x^2y''-2xy'+2y=0,\quad y(0)=k_0,\quad y'(0)=k_1
\end{eqnarray*}
have a solution? What are the solutions?
(d) Show that if \(x_0\ne0\) and \(k_0,k_1\) are arbitrary constants then the initial value problem
\begin{eqnarray*}
x^2y''-2xy'+2y=0,\quad y(x_0)=k_0,\quad y'(x_0)=k_1
\end{eqnarray*}
has a unique solution on \((-\infty,\infty)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{44}\)
(a) Verify that \(y_1=x^3\) and \(y_2=x^4\) satisfy
\begin{equation}\label{eq:2.1E.17}
x^2y''-6xy'+12y=0
\end{equation}
on \((-\infty,\infty)\), and that \(\{y_1,y_2\}\) is a fundamental set of solutions of \eqref{eq:2.1E.17} on \((-\infty,0)\) and \((0,\infty)\).
(b) Show that \(y\) is a solution of \eqref{eq:2.1E.17} on \((-\infty,\infty)\) if and only if
\begin{eqnarray*}
y=\left\{\begin{array}{rr}
a_1x^3+a_2x^4,&x\ge 0,\\
b_1x^3+b_2x^4,&x<0,
\end{array}\right.
\end{eqnarray*}
where \(a_1\), \(a_2\), \(b_1\), and \(b_2\) are arbitrary constants.
(c) For what values of \(k_0\) and \(k_1\) does the initial value problem
\begin{eqnarray*}
x^2y''-6xy'+12y=0, \quad y(0)=k_0,\quad y'(0)=k_1
\end{eqnarray*}
have a solution? What are the solutions?
(d) Show that if \(x_0\ne0\) and \(k_0,k_1\) are arbitrary constants then the initial value problem
\begin{equation}\label{eq:2.1E.18}
x^2y''-6xy'+12y=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1
\end{equation}
has infinitely many solutions on \((-\infty,\infty)\). On what interval does \eqref{eq:2.1E.18} have a unique solution?
- Answer
-
Add texts here. Do not delete this text first.