2.2E: Exercises
- Page ID
- 17354
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Exercises \((2.2E.1)\) to \((2.2E.12)\), find the general solution.
Exercise \(\PageIndex{1}\)
\(y''+5y'-6y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{2}\)
\(y''-4y'+5y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{3}\)
\(y''+8y'+7y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{4}\)
\(y''-4y'+4y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{5}\)
\(y''+2y'+10y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{6}\)
\(y''+6y'+10y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{7}\)
\(y''-8y'+16y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{8}\)
\(y''+y'=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{9}\)
\(y''-2y'+3y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{10}\)
\(y''+6y'+13y=0 \)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{11}\)
\(4y''+4y'+10y=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{12}\)
\(10y''-3y'-y=0\)
- Answer
-
Add texts here. Do not delete this text first.
In Exercises \((2.2E.13)\) to \((2.2E.17)\), solve the initial value problem.
Exercise \(\PageIndex{13}\)
\(y''+14y'+50y=0, \quad y(0)=2,\quad y'(0)=-17\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{14}\)
\(6y''-y'-y=0, \quad y(0)=10,\quad y'(0)=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{15}\)
\(6y''+y'-y=0, \quad y(0)=-1,\quad y'(0)=3\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{16}\)
\(4y''-4y'-3y=0, \quad y(0)=\displaystyle{13\over 12},\quad y'(0)=\displaystyle{23 \over 24}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{17}\)
\(4y''-12y'+9y=0, \quad y(0)=3,\quad y'(0)=\displaystyle{5\over 2}\)
- Answer
-
Add texts here. Do not delete this text first.
In Exercises \9(2.2E.18)\) to \((2.2E.21)\), solve the initial value problem and graph the solution.
Exercise \(\PageIndex{18}\)
\(y''+7y'+12y=0, \quad y(0)=-1,\quad y'(0)=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{19}\)
\(y''-6y'+9y=0, \quad y(0)=0,\quad y'(0)=2\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{20}\)
\(36y''-12y'+y=0, \quad y(0)=3,\quad y'(0)=\displaystyle{5\over2}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{21}\)
\(y''+4y'+10y=0, \quad y(0)=3,\quad y'(0)=-2\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{22}\)
(a) Suppose \(y\) is a solution of the constant coefficient homogeneous equation
\begin{equation}\label{eq:2.2E.1}
ay''+by'+cy=0.
\end{equation}
Let \(z(x)=y(x-x_0)\), where \(x_0\) is an arbitrary real number. Show that
\begin{eqnarray*}
az''+bz'+cz=0.
\end{eqnarray*}
(b) Let \(z_1(x)=y_1(x-x_0)\) and \(z_2(x)=y_2(x-x_0)\), where \(\{y_1,y_2\}\) is a fundamental set of solutions of \eqref{eq:2.2E.1} (A). Show that \(\{z_1,z_2\}\) is also a fundamental set of solutions of \eqref{eq:2.2E.1}.
(c) The statement of Theorem \((2.2.1)\) is convenient for solving an initial value problem
\begin{eqnarray*}
ay''+by'+cy=0, \quad y(0)=k_0,\quad y'(0)=k_1,
\end{eqnarray*}
where the initial conditions are imposed at \(x_0=0\). However, if the initial value problem is
\begin{equation}\label{eq:2.2E.2}
ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1,
\end{equation}
where \(x_0\ne0\), then determining the constants in
\begin{eqnarray*}
y=c_1e^{r_1x}+c_2e^{r_2x}, \quad y=e^{r_1x}(c_1+c_2x),\mbox{ or } y=e^{\lambda x}(c_1\cos\omega x+c_2\sin\omega x)
\end{eqnarray*}
(whichever is applicable) is more complicated. Use part (b) to restate Theorem \((2.2.1)\) in a form more convenient for solving \eqref{eq:2.2E.2}.
- Answer
-
Add texts here. Do not delete this text first.
In Exercises \((2.2E.23)\) tp \((2.2E.28)\), use a method suggested by Exercise \((2.2E.22)\) to solve the initial value problem.
Exercise \(\PageIndex{23}\)
\(y''+3y'+2y=0, \quad y(1)=-1,\quad y'(1)=4\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{24}\)
\(y''-6y'-7y=0, \quad y(2)=-\displaystyle{1\over3},\quad y'(2)=-5\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{25}\)
\(y''-14y'+49y=0, \quad y(1)=2,\quad y'(1)=11\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{26}\)
\(9y''+6y'+y=0, \quad y(2)=2,\quad y'(2)=-\displaystyle{14\over3}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{27}\)
\(9y''+4y=0, \quad y(\pi/4)=2,\quad y'(\pi/4)=-2\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{28}\)
\(y''+3y=0, \quad y(\pi/3)=2,\quad y'(\pi/3)=-1\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{29}\)
Prove: If the characteristic equation of
\begin{equation}\label{eq:2.2E.3}
ay''+by'+cy=0
\end{equation}
has a repeated negative root or two roots with negative real parts, then every solution of \eqref{eq:2.2E.3} approaches zero as \(x\to\infty\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{30}\)
Suppose the characteristic polynomial of \(ay''+by'+cy=0\) has distinct real roots \(r_1\) and \(r_2\). Use a method suggested by Exercise \((2.2E.22)\) to find a formula for the solution of
\begin{eqnarray*}
ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{31}\)
Suppose the characteristic polynomial of \(ay''+by'+cy=0\) has a repeated real root \(r_1\). Use a method suggested by Exercise \((2.2E.22)\) to find a formula for the solution of
\begin{eqnarray*}
ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{32}\)
Suppose the characteristic polynomial of \(ay''+by'+cy=0\) has complex conjugate roots \(\lambda\pm i\omega\). Use a method suggested by Exercise \((2.2E.22)\) to find a formula for the solution of
\begin{eqnarray*}
ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{33}\)
Suppose the characteristic equation of
\begin{equation}\label{eq:2.2E.4}
ay''+by'+cy=0
\end{equation}
has a repeated real root \(r_1\). Temporarily, think of \(e^{rx}\) as a function of two real variables \(x\) and \(r\).
(a) Show that
\begin{equation}\label{eq:2.2E.5}
a{\partial^2\over\partial^2 x}(e^{rx})+b{\partial \over\partial x}(e^{rx}) +ce^{rx}=a(r-r_1)^2e^{rx}.
\end{equation}
(b) Differentiate \eqref{eq:2.2E.5} with respect to \(r\) to obtain
\begin{equation}\label{eq:2.2E.6}
a{\partial\over\partial r}\left({\partial^2\over\partial^2x}(e^{rx})\right)+b{\partial\over\partial r}\left({\partial \over\partial x}(e^{rx})\right) +c(xe^{rx})=[2+(r-r_1)x]a(r-r_1)e^{rx}.
\end{equation}
(c) Reverse the orders of the partial differentiations in the first two terms on the left side of \eqref{eq:2.2E.6} to obtain
\begin{equation}\label{eq:2.2E.7}
a{\partial^2\over\partial x^2}(xe^{rx})+b{\partial\over\partial x}(xe^{rx})+c(xe^{rx})=[2+(r-r_1)x]a(r-r_1)e^{rx}.
\end{equation}
(d) Set \(r=r_1\) in \eqref{eq:2.2E.5} and \eqref{eq:2.2E.7} to see that \(y_1=e^{r_1x}\) and \(y_2=xe^{r_1x}\) are solutions of \eqref{eq:2.2E.4}.
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{34}\)
In calculus you learned that \(e^u\), \(\cos u\), and \(\sin u\) can be represented by the infinite series
\begin{equation}\label{eq:2.2E.8}
e^u=\sum_{n=0}^\infty {u^n\over n!} =1+{u\over 1!}+{u^2\over 2!}+{u^3\over 3!}+\cdots+{u^n\over n!}+\cdots
\end{equation}
\begin{equation}\label{eq:2.2E.9}
\cos u=\sum_{n=0}^\infty (-1)^n{u^{2n}\over(2n)!} =1-{u^2\over2!}+{u^4\over4!}+\cdots+(-1)^n{u^{2n}\over(2n)!} +\cdots,
\end{equation}
and
\begin{equation}\label{eq:2.2E.10}
\sin u=\sum_{n=0}^\infty (-1)^n{u^{2n+1}\over(2n+1)!} =u-{u^3\over3!}+{u^5\over5!}+\cdots+(-1)^n {u^{2n+1}\over(2n+1)!} +\cdots
\end{equation}
for all real values of \(u\). Even though you have previously considered \eqref{eq:2.2E.8} only for real values of \(u\), we can set \(u=i\theta\), where \(\theta\) is real, to obtain
\begin{equation}\label{eq:2.2E.11}
e^{i\theta}=\sum_{n=0}^\infty {(i\theta)^n\over n!}.
\end{equation}
Given the proper background in the theory of infinite series with complex terms, it can be shown that the series in \eqref{eq:2.2E.11} converges for all real \(\theta\).
(a) Recalling that \(i^2=-1,\) write enough terms of the sequence \(\{i^n\}\) to convince yourself that the sequence is repetitive:
\begin{eqnarray*}
1,i,-1,-i,1,i,-1,-i,1,i,-1,-i,1,i,-1,-i,\cdots.
\end{eqnarray*}
Use this to group the terms in \eqref{eq:2.2E.11} as
\begin{eqnarray*}
e^{i\theta}&=&\left(1-{\theta^2\over2}+{\theta^4\over4}+\cdots\right) +i\left(\theta-{\theta^3\over3!}+{\theta^5\over5!}+\cdots\right)\\
&=&\sum_{n=0}^\infty (-1)^n{\theta^{2n}\over(2n)!} +i\sum_{n=0}^\infty (-1)^n{\theta^{2n+1}\over(2n+1)!}.
\end{eqnarray*}
By comparing this result with \eqref{eq:2.2E.9} and \eqref{eq:2.2E.10}, conclude that
\begin{equation}\label{eq:2.2E.12}
e^{i\theta}=\cos\theta+i\sin\theta.
\end{equation}
This is Euler's Identity.
(b) Starting from
\begin{eqnarray*}
e^{i\theta_1}e^{i\theta_2}=(\cos\theta_1+i\sin\theta_1), (\cos\theta_2+i\sin\theta_2),
\end{eqnarray*}
collect the real part (the terms not multiplied by \(i\)) and the imaginary part (the terms multiplied by \(i\)) on the right, and use the trigonometric identities
\begin{eqnarray*}
\cos(\theta_1+\theta_2)&=&\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2\\
\sin(\theta_1+\theta_2)&=&\sin\theta_1\cos\theta_2+\cos\theta_1\sin\theta_2
\end{eqnarray*}
to verify that
\begin{eqnarray*}
e^{i(\theta_1+\theta_2)}=e^{i\theta_1}e^{i\theta_2},
\end{eqnarray*}
as you would expect from the use of the exponential notation \(e^{i\theta}\).
(c) If \(\alpha\) and \(\beta\) are real numbers, define
\begin{equation}\label{eq:2.2E.13}
e^{\alpha+i\beta}=e^\alpha e^{i\beta}=e^\alpha(\cos\beta+i\sin\beta).
\end{equation}
Show that if \(z_1=\alpha_1+i\beta_1\) and \(z_2=\alpha_2+i\beta_2\) then
\begin{eqnarray*}
e^{z_1+z_2}=e^{z_1}e^{z_2}.
\end{eqnarray*}
(d) Let \(a\), \(b\), and \(c\) be real numbers, with \(a\ne0\). Let \(z=u+iv\) where \(u\) and \(v\) are real-valued functions of \(x\). Then we say that \(z\) is a solution of
\begin{equation}\label{eq:2.2E.14}
ay''+by'+cy=0
\end{equation}
if \(u\) and \(v\) are both solutions of \eqref{eq:2.2E.14}. Use Theorem \((2.2.1)\) (c) to verify that if the characteristic equation of \eqref{eq:2.2E.14} has complex conjugate roots \(\lambda\pm i\omega\) then \(z_1=e^{(\lambda+i\omega)x}\) and \(z_2=e^{(\lambda-i\omega)x}\) are both solutions of \eqref{eq:2.2E.14}.
- Answer
-
Add texts here. Do not delete this text first.