3.4E: Exercises
- Page ID
- 17626
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Exercises \((3.4E.1)\) to \((3.4E.18)\), find the general solution of the given Euler equation on \((0,\infty)\).
Exercise \(\PageIndex{1}\)
\(x^2y''+7xy'+8y=0\)
Exercise \(\PageIndex{2}\)
\(x^2y''-7xy'+7y=0\)
- Answer
-
\(p(r)=r(r-1)-7r+7=(r-7)(r-1)\) ; \(y=c_1x+c_2x^7\) .
Exercise \(\PageIndex{3}\)
\(x^2y''-xy'+y=0\)
Exercise \(\PageIndex{4}\)
\(x^2y''+5xy'+4y=0\)
- Answer
-
\(p(r)=r(r-1)+5r+4=(r+2)^2\) ;\(y=x^{-2}(c_1+c_2 \ln x)\)
Exercise \(\PageIndex{5}\)
\(x^2y''+xy'+y=0\)
Exercise \(\PageIndex{6}\)
\(x^2y''-3xy'+13y=0\)
- Answer
-
\(p(r)=r(r-1)-3r+13=(r-2)^2+9\) ;
\(y=x^2[c_1 \cos (3 \ln x)+c_2 \sin (3 \ln x)]\) .
Exercise \(\PageIndex{7}\)
\(x^2y''+3xy'-3y=0\)
Exercise \(\PageIndex{8}\)
\(12x^2y''-5xy'+6y=0\)
- Answer
-
\(p(r)=12r(r-1)-5r+6=(3r-2)(4r-3)\) ;
\(y=c_1x^{2/3}+c_2 x^{3/4}\) .
Exercise \(\PageIndex{9}\)
\(4x^2y''+8xy'+y=0\)
Exercise \(\PageIndex{10}\)
\(3x^2y''-xy'+y=0\)
- Answer
-
\(p(r)=3r(r-1)-r+1=(r-1)(3r-1)\) ; \(y=c_1x+c_2x^{1/3}\) .
Exercise \(\PageIndex{11}\)
\(2x^2y''-3xy'+2y=0\)
Exercise \(\PageIndex{12}\)
\(x^2y''+3xy'+5y=0\)
- Answer
-
\(p(r)=r(r-1)+3r+5=(r+1)^2+4\) ;
\(y=\displaystyle{
{1\over x}\left[c_1\cos(2 \ln x)+c_2\sin(2 \ln x\right]}\)
Exercise \(\PageIndex{13}\)
\(9x^2y''+15xy'+y=0\)
Exercise \(\PageIndex{14}\)
\(x^2y''-xy'+10y=0\)
- Answer
-
\(p(r)=r(r-1)-r+10=(r-1)^2+9\) ;
\(y=x\left[c_1\cos(3 \ln x)+c_2\sin(3 \ln x)\right]\) .
Exercise \(\PageIndex{15}\)
\(x^2y''-6y=0\)
Exercise \(\PageIndex{16}\)
\(2x^2y''+3xy'-y=0\)
- Answer
-
\(p(r)=2r(r-1)+3r-1=(r+1)(2r-1)\) ;
\(y=\displaystyle {\frac{c_1}{x}+\frac{c_2}{x^{1/2}}}\).
Exercise \(\PageIndex{17}\)
\(x^2y''-3xy'+4y=0\)
Exercise \(\PageIndex{18}\)
\(2x^2y''+10xy'+9y=0\)
- Answer
-
\(p(r)=2r(r-1)+10r+9=2(r+2)^2+1\) ;
\(y=\displaystyle{{1\over x^2} \left[c_1\cos\left({1\over\sqrt{2}} \ln x\right)+c_2\sin\left({1\over\sqrt{2}} \ln x\right) \right]}\) .
Exercise \(\PageIndex{19}\)
(a) Adapt the proof of Theorem \((3.4.3)\) to show that \(y=y(x)\) satisfies the Euler equation
\begin{equation}\label{eq:3.4E.1}
ax^2y''+bxy'+cy=0
\end{equation}
on \((-\infty,0)\) if and only if \(Y(t)=y(-e^t)\)
\begin{eqnarray*}
a {d^2Y\over dt^2}+(b-a){dY\over dt}+cY=0.
\end{eqnarray*}
on \((-\infty,\infty)\).
(b) Use part (a) to show that the general solution of \eqref{eq:3.4E.1} on \((-\infty,0)\) is
\begin{eqnarray*}
y&=&c_1|x|^{r_1}+c_2|x|^{r_2}\mbox{ if \(r_1\) and \(r_2\) are distinct real numbers; }\\
y&=&|x|^{r_1}(c_1+c_2\ln|x|)\mbox{ if \(r_1=r_2\); }\\
y&=&|x|^{\lambda}\left[c_1\cos\left(\omega\ln|x|\right)+ c_2\sin\left(\omega\ln|x| \right)\right]\mbox{ if \(r_1,r_2=\lambda\pm i\omega\) with \(\omega>0\)}.
\end{eqnarray*}
Exercise \(\PageIndex{20}\)
Use reduction of order to show that if
\begin{eqnarray*}
ar(r-1)+br+c=0
\end{eqnarray*}
has a repeated root \(r_1\) then \(y=x^{r_1}(c_1+c_2\ln x)\) is the general solution of
\begin{eqnarray*}
ax^2y''+bxy'+cy=0
\end{eqnarray*}
on \((0,\infty)\).
- Answer
-
If \(p(r)=ar(r-1)+br+c=a(r-r_1)^2\) , then (A) \(p(r_1)=p'(r_1)=0\) .
If \(y=ux^{r_1}\) , then \(y'=u'x^{r_1}+r_1ux^{r_1-1}\)
and \(y''=u''x^{r_1}+2r_1u'x_1^{r_1-1}+r_1(r_1-1)x_1^{r_1-2}\) , so
\begin{eqnarray*}
ax^2y''+bxy'+cy&=&ax^{r_1+2}u''+(2ar_1+b)x^{r_1+1}u'
+\left(ar_1(r_1-1)+br_1+c\right)x^{r_1}u\\
&=&ax^{r_1+2}u''+p'(r_1)x_1^{r_1+1}u'+p(r)x^{r_1}u=ax^{r_1+2}u'',
\end{eqnarray*}
from (A). Therefore,\) u''=0\) , so \) u=c_1+c_2x\) and
\(y=x^{r_1}(c_1+c_2x)\) .
Exercise \(\PageIndex{21}\)
A nontrivial solution of
\begin{eqnarray*}
P_0(x)y''+P_1(x)y'+P_2(x)y=0
\end{eqnarray*}
is said to be \( \textcolor{blue}{\mbox{oscillatory}} \) on an interval \((a,b)\) if it has infinitely many zeros on \((a,b)\). Otherwise \(y\) is said to be \( \textcolor{blue}{\mbox{nonoscillatory}} \) on \((a,b)\). Show that the equation
\begin{eqnarray*}
x^2y''+ky=0 \quad (k=\; \mbox{constant})
\end{eqnarray*}
has oscillatory solutions on \((0,\infty)\) if and only if \(k>1/4\).
Exercise \(\PageIndex{22}\)
In Example \((3.4.2)\) we saw that \(x_0=1\) and \(x_0=-1\) are regular singular points of Legendre's equation
\begin{equation}\label{eq:3.4E.2}
(1-x^2)y''-2xy'+\alpha(\alpha+1)y=0.
\end{equation}
(a) Introduce the new variables \(t=x-1\) and \(Y(t)=y(t+1)\), and show that \(y\) is a solution of \eqref{eq:3.4E.2} if and only if \(Y\) is a solution of
\begin{eqnarray*}
t(2+t){d^2Y\over dt^2}+2(1+t){dY\over dt}-\alpha(\alpha+1)Y=0,
\end{eqnarray*}
which has a regular singular point at \(t_0=0\).
(b) Introduce the new variables \(t=x+1\) and \(Y(t)=y(t-1)\), and show that \(y\) is a solution of \eqref{eq:3.4E.2} if and only if \(Y\( is a solution of
\begin{eqnarray*}
t(2-t){d^2Y\over dt^2}+2(1-t){dY\over dt}+\alpha(\alpha+1)Y=0,
\end{eqnarray*}
which has a regular singular point at \(t_0=0\).
- Answer
-
a. If \( t=x-1\) and \(y(t)=y(t+1)=y(x)\) , then
\( \displaystyle(1-x^2)y''-2xy'+\alpha(\alpha+1)y=
-t(2+t){d^2Y\over dt^2}-2(1+t){dY\over dt}+\alpha(\alpha+1)Y=0\) ,
so \(y\) satisfies Legendre's equation if and only if \(y\) satisfies
(A) \) \displaystyle t(2+t){d^2Y\over dt^2}+2(1+t){dY\over
dt}-\alpha(\alpha+1)Y=0\) . Since (A) can be rewritten as
\) \displaystyle t^2(2+t){d^2Y\over dt^2}+2t(1+t){dY\over
dt}-\alpha(\alpha+1)tY=0\) , (A) has a regular singular point at
\) t=0_0\) .
b. If \( t=x+1\) and \(y(t)=y(t-1)=y(x)\) , then
\( \displaystyle(1-x^2)y''-2xy'+\alpha(\alpha+1)y=
t(2-t){d^2Y\over dt^2}+2(1-t){dY\over dt}+\alpha(\alpha+1)Y\) ,
so \(y\) satisfies Legendre's equation if and only if \(y\) satisfies
(B) \) \displaystyle t(2-t){d^2Y\over dt^2}+2(1-t){dY\over
dt}+\alpha(\alpha+1)Y\) ,
Since (B) can be rewritten as
(B) \( \displaystyle t^2(2-t){d^2Y\over dt^2}+2t(1-t){dY\over
dt}+\alpha(\alpha+1)tY\) ,
(B) has a regular singular point at
\( t=0_0\) .
Exercise \(\PageIndex{23}\)
Let \(P_0,P_1\), and \(P_2\) be polynomials with no common factor, and suppose \(x_0\ne0\) is a singular point of
\begin{equation}\label{eq:3.4E.3}
P_0(x)y''+P_1(x)y'+P_2(x)y=0.
\end{equation}
Let \(t=x-x_0\) and \(Y(t)=y(t+x_0)\).
(a) Show that \(y\) is a solution of \eqref{eq:3.4E.3} if and only if \(Y\) is a solution of
\begin{equation}\label{eq:3.4E.4}
R_0(t){d^2Y\over dt^2}+R_1(t){dY\over dt}+R_2(t)Y=0.
\end{equation}
where
\begin{eqnarray*}
R_i(t)=P_i(t+x_0),\quad i=0,1,2.
\end{eqnarray*}
(b) Show that \(R_0\), \(R_1\), and \(R_2\) are polynomials in \(t\) with no common factors, and \(R_0(0)=0\); thus, \(t_0=0\) is a singular point of \eqref{eq:3.4E.4}.