$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

5.C: Surface Area

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Overview

The purpose of this lesson is to learn how to find the surface area of a solid.

This lesson will address the following CCRS Standard(s) for Geometry:

• 7.G.6: Solve real-world and mathematical problems involving area, volume and surface area of two- and three- dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms

Directions

1. Take notes while watching videos below
2. Go to http://wamap.org and log into our course to complete assignment 5.B with 80% or better.

Watch

Surface Area [9:38]

Do

Complete assignment 5.B with 80% or better at http://wamap.org

Summary

In this lesson we have learned:

• If P is the perimeter of the base of a prism (or circumference of the base of a cylinder), and B is the area of the base, then the surface area of the prism (or cylinder) is (where l is the slant height)
• If P is the perimeter of the base of a pyramid (or circumference of the base of a cone), and B is the area of the base, then the surface area of the pyramid (or cone) is (where l is the slant height)
• The surface area of a sphere is </mi> <msup> <mi>r</mi> <mn>2</mn> </msup> [/itex]' data-equation-content="A=4\pi r^2">