$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2.4E: Exercises

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

### Practice Makes Perfect

Solve Equations Using the General Strategy for Solving Linear Equations

In the following exercises, solve each linear equation.

Exercise $$\PageIndex{1}$$

$$15(y-9)=-60$$

Exercise $$\PageIndex{2}$$

$$21(y-5)=-42$$

$$y=3$$

Exercise $$\PageIndex{3}$$

$$-9(2 n+1)=36$$

Exercise $$\PageIndex{4}$$

$$-16(3 n+4)=32$$

$$n=-2$$

Exercise $$\PageIndex{5}$$

$$8(22+11 r)=0$$

Exercise $$\PageIndex{6}$$

$$5(8+6 p)=0$$

$$p=-\frac{4}{3}$$

Exercise $$\PageIndex{7}$$

$$-(w-12)=30$$

Exercise $$\PageIndex{8}$$

$$-(t-19)=28$$

$$t=-9$$

Exercise $$\PageIndex{9}$$

$$9(6 a+8)+9=81$$

Exercise $$\PageIndex{10}$$

$$8(9 b-4)-12=100$$

$$b=2$$

Exercise $$\PageIndex{11}$$

$$32+3(z+4)=41$$

Exercise $$\PageIndex{12}$$

$$21+2(m-4)=25$$

$$m=6$$

Exercise $$\PageIndex{13}$$

$$51+5(4-q)=56$$

Exercise $$\PageIndex{14}$$

$$-6+6(5-k)=15$$

$$k=\frac{3}{2}$$

Exercise $$\PageIndex{15}$$

$$2(9 s-6)-62=16$$

Exercise $$\PageIndex{16}$$

$$8(6 t-5)-35=-27$$

$$t=1$$

Exercise $$\PageIndex{17}$$

$$3(10-2 x)+54=0$$

Exercise $$\PageIndex{18}$$

$$-2(11-7 x)+54=4$$

$$x=-2$$

Exercise $$\PageIndex{19}$$

$$\frac{2}{3}(9 c-3)=22$$

Exercise $$\PageIndex{20}$$

$$\frac{3}{5}(10 x-5)=27$$

$$x=5$$

Exercise $$\PageIndex{21}$$

$$\frac{1}{5}(15 c+10)=c+7$$

Exercise $$\PageIndex{22}$$

$$\frac{1}{4}(20 d+12)=d+7$$

$$d=1$$

Exercise $$\PageIndex{23}$$

$$18-(9 r+7)=-16$$

Exercise $$\PageIndex{24}$$

$$15-(3 r+8)=28$$

$$r=-7$$

Exercise $$\PageIndex{25}$$

$$5-(n-1)=19$$

Exercise $$\PageIndex{26}$$

$$-3-(m-1)=13$$

$$m=-15$$

Exercise $$\PageIndex{27}$$

$$11-4(y-8)=43$$

Exercise $$\PageIndex{28}$$

$$18-2(y-3)=32$$

$$y=-4$$

Exercise $$\PageIndex{29}$$

$$24-8(3 v+6)=0$$

Exercise $$\PageIndex{30}$$

$$35-5(2 w+8)=-10$$

$$w=\frac{1}{2}$$

Exercise $$\PageIndex{31}$$

$$4(a-12)=3(a+5)$$

Exercise $$\PageIndex{32}$$

$$-2(a-6)=4(a-3)$$

$$a=4$$

Exercise $$\PageIndex{33}$$

$$2(5-u)=-3(2 u+6)$$

Exercise $$\PageIndex{34}$$

$$5(8-r)=-2(2 r-16)$$

$$r=8$$

Exercise $$\PageIndex{35}$$

$$3(4 n-1)-2=8 n+3$$

Exercise $$\PageIndex{36}$$

$$9(2 m-3)-8=4 m+7$$

$$m=3$$

Exercise $$\PageIndex{37}$$

$$12+2(5-3 y)=-9(y-1)-2$$

Exercise $$\PageIndex{38}$$

$$-15+4(2-5 y)=-7(y-4)+4$$

$$y=-3$$

Exercise $$\PageIndex{39}$$

$$8(x-4)-7 x=14$$

Exercise $$\PageIndex{40}$$

$$5(x-4)-4 x=14$$

$$x=34$$

Exercise $$\PageIndex{41}$$

$$5+6(3 s-5)=-3+2(8 s-1)$$

Exercise $$\PageIndex{42}$$

$$-12+8(x-5)=-4+3(5 x-2)$$

$$x=-6$$

Exercise $$\PageIndex{43}$$

$$4(u-1)-8=6(3 u-2)-7$$

Exercise $$\PageIndex{44}$$

$$7(2 n-5)=8(4 n-1)-9$$

$$n=-1$$

Exercise $$\PageIndex{45}$$

$$4(p-4)-(p+7)=5(p-3)$$

Exercise $$\PageIndex{46}$$

$$3(a-2)-(a+6)=4(a-1)$$

$$a=-4$$

Exercise $$\PageIndex{47}$$

$$\begin{array}{l}{-(9 y+5)-(3 y-7)} \\ {=16-(4 y-2)}\end{array}$$

Exercise $$\PageIndex{48}$$

$$\begin{array}{l}{-(7 m+4)-(2 m-5)} \\ {=14-(5 m-3)}\end{array}$$

$$m=-4$$

Exercise $$\PageIndex{49}$$

$$\begin{array}{l}{4[5-8(4 c-3)]} \\ {=12(1-13 c)-8}\end{array}$$

Exercise $$\PageIndex{50}$$

$$\begin{array}{l}{5[9-2(6 d-1)]} \\ {=11(4-10 d)-139}\end{array}$$

$$d=-3$$

Exercise $$\PageIndex{51}$$

$$\begin{array}{l}{3[-9+8(4 h-3)]} \\ {=2(5-12 h)-19}\end{array}$$

Exercise $$\PageIndex{52}$$

$$\begin{array}{l}{3[-14+2(15 k-6)]} \\ {=8(3-5 k)-24}\end{array}$$

$$k=\frac{3}{5}$$

Exercise $$\PageIndex{53}$$

$$\begin{array}{l}{5[2(m+4)+8(m-7)]} \\ {=2[3(5+m)-(21-3 m)]}\end{array}$$

Exercise $$\PageIndex{54}$$

$$\begin{array}{l}{10[5(n+1)+4(n-1)]} \\ {=11[7(5+n)-(25-3 n)]}\end{array}$$

$$n=-5$$

Exercise $$\PageIndex{55}$$

$$5(1.2 u-4.8)=-12$$

Exercise $$\PageIndex{56}$$

$$4(2.5 v-0.6)=7.6$$

$$v=1$$

Exercise $$\PageIndex{57}$$

$$0.25(q-6)=0.1(q+18)$$

Exercise $$\PageIndex{58}$$

$$0.2(p-6)=0.4(p+14)$$

$$p=-34$$

Exercise $$\PageIndex{59}$$

$$0.2(30 n+50)=28$$

Exercise $$\PageIndex{60}$$

$$0.5(16 m+34)=-15$$

$$m=-4$$

Classify Equations

In the following exercises, classify each equation as a conditional equation, an identity, or a contradiction and then state the solution.

Exercise $$\PageIndex{61}$$

$$23 z+19=3(5 z-9)+8 z+46$$

Exercise $$\PageIndex{62}$$

$$15 y+32=2(10 y-7)-5 y+46$$

identity; all real numbers

Exercise $$\PageIndex{63}$$

$$5(b-9)+4(3 b+9)=6(4 b-5)-7 b+21$$

Exercise $$\PageIndex{64}$$

$$9(a-4)+3(2 a+5)=7(3 a-4)-6 a+7$$

identity; all real numbers

Exercise $$\PageIndex{65}$$

$$18(5 j-1)+29=47$$

Exercise $$\PageIndex{66}$$

$$24(3 d-4)+100=52$$

conditional equation; $$d=\frac{2}{3}$$

Exercise $$\PageIndex{67}$$

$$22(3 m-4)=8(2 m+9)$$

Exercise $$\PageIndex{68}$$

$$30(2 n-1)=5(10 n+8)$$

conditional equation; $$n=7$$

Exercise $$\PageIndex{69}$$

$$7 v+42=11(3 v+8)-2(13 v-1)$$

Exercise $$\PageIndex{70}$$

$$18 u-51=9(4 u+5)-6(3 u-10)$$

Exercise $$\PageIndex{71}$$

$$3(6 q-9)+7(q+4)=5(6 q+8)-5(q+1)$$

Exercise $$\PageIndex{72}$$

$$5(p+4)+8(2 p-1)=9(3 p-5)-6(p-2)$$

Exercise $$\PageIndex{73}$$

$$12(6 h-1)=8(8 h+5)-4$$

Exercise $$\PageIndex{74}$$

$$9(4 k-7)=11(3 k+1)+4$$

conditional equation; $$k=26$$

Exercise $$\PageIndex{75}$$

$$45(3 y-2)=9(15 y-6)$$

Exercise $$\PageIndex{76}$$

$$60(2 x-1)=15(8 x+5)$$

Exercise $$\PageIndex{77}$$

$$16(6 n+15)=48(2 n+5)$$

Exercise $$\PageIndex{78}$$

$$36(4 m+5)=12(12 m+15)$$

identity; all real numbers

Exercise $$\PageIndex{79}$$

$$9(14 d+9)+4 d=13(10 d+6)+3$$

Exercise $$\PageIndex{80}$$

$$11(8 c+5)-8 c=2(40 c+25)+5$$

identity; all real numbers

### Everyday Math

Exercise $$\PageIndex{81}$$

Fencing Micah has 44 feet of fencing to make a dog run in his yard. He wants the length to be 2.5 feet more than the width. Find the length, L, by solving the equation 2L+2(L−2.5)=44.

Exercise $$\PageIndex{82}$$

Coins Rhonda has $$\ 1.90$$ in nickels and dimes. The number of dimes is one less than twice the number of nickels. Find the
number of nickels, $$n,$$ by solving the equation $$0.05 n+0.10(2 n-1)=1.90 .$$

8 nickels

### Writing Exercises

Exercise $$\PageIndex{83}$$

Using your own words, list the steps in the general strategy for solving linear equations.

Exercise $$\PageIndex{84}$$

Explain why you should simplify both sides of an equation as much as possible before collecting the variable terms to one side and the constant terms to the other side.

Exercise $$\PageIndex{85}$$

What is the first step you take when solving the equation $$3-7(y-4)=38 ?$$ Why is this your first step?

Exercise $$\PageIndex{86}$$

Solve the equation $$\frac{1}{4}(8 x+20)=3 x-4$$ explaining all the steps of your solution as in the examples in this section.

### Self Check

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objective of this section. ⓑ On a scale of 1-10, how would you rate your mastery of this section in light of your responses on the checklist? How can you improve this?

## Glossary

conditional equation
An equation that is true for one or more values of the variable and false for all other values of the variable is a conditional equation.