Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

12.5E: Exercises for Section 12.5

  • Page ID
    10582
  • [ "article:topic", "license:ccby" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Finding Components of Acceleration & Kepler's Laws

    1) Find the tangential and normal components of acceleration for \(\vecs r(t)=t^2\,\hat{\mathbf{i}}+2t \,\hat{\mathbf{j}}\)  when  \(t=1\).

    Answer:
    \(a_\vecs{T}=\sqrt{2}, \quad a_\vecs{N}=\sqrt{2}\)

    In questions 2 - 8, find the tangential and normal components of acceleration.

    2)   \(\vecs r(t)=⟨\cos(2t),\sin(2t),1⟩\)

    3)   \(\vecs r(t)=⟨e^t \cos t,e^t\sin t,e^t⟩\). The graph is shown here:

    Answer:
    \(a_\vecs{T}=\sqrt{3}e^t, \quad a_\vecs{N}=\sqrt{2}e^t\)

    4)   \(\vecs r(t)=⟨\frac{2}{3}(1+t)^{3/2}, \frac{2}{3}(1-t)^{3/2},\sqrt{2}t⟩\)

    5)   \(\vecs r(t)=⟨2t,t^2,\frac{t^3}{3}⟩\)

    Answer:
    \(a_\vecs{T}=2t, \quad a_\vecs{N}=2\)

    6)   \(\vecs r(t)=t^2\,\hat{\mathbf{i}}+t^2\,\hat{\mathbf{j}}+t^3\,\hat{\mathbf{k}}\)

    7)   \(\vecs r(t)=⟨6t,3t^2,2t^3⟩\)

    Answer:
    \(a_\vecs{T}=\frac{6t +12t^3}{\sqrt{1+t^2+t^4}}, \quad a_\vecs{N}=6\sqrt{\frac{1+4t^2+t^4}{1+t^2+t^4}}\)

    8)   \(\vecs r(t)=3\cos(2πt)\,\hat{\mathbf{i}}+3\sin(2πt)\,\hat{\mathbf{j}}\)

    Answer:
    \(a_\vecs{T}=0, \quad a_\vecs{N}=2\sqrt{3}\pi\)

     

    9)  Find the tangential and normal components of acceleration for \(\vecs r(t)=a\cos(ωt)\,\hat{\mathbf{i}}+b\sin(ωt)\,\hat{\mathbf{j}}\) at \(t=0\).

    Answer:
    \(a_\vecs{T}=0, \quad a_\vecs{N}=aω^2\)

    10)  Suppose that the position function for an object in three dimensions is given by the equation \(\vecs r(t)=t\cos(t)\,\hat{\mathbf{i}}+t\sin(t)\,\hat{\mathbf{j}}+3t\,\hat{\mathbf{k}}\).

    a.  Show that the particle moves on a circular cone.

    b.  Find the angle between the velocity and acceleration vectors when \(t=1.5\).

    c.  Find the tangential and normal components of acceleration when \(t=1.5\).

    Answer:
    c.  \(a_\vecs{T}=0.43\,\text{m/sec}^2, \quad a_\vecs{N}=2.46\,\text{m/sec}^2\)

     

    11) The force on a particle is given by \(\vecs f(t)=(cost)\,\hat{\mathbf{i}}+(sint)\,\hat{\mathbf{j}}\). The particle is located at point \((c,0)\) at \(t=0\). The initial velocity of the particle is given by \(\vecs v(0)=v_0\,\hat{\mathbf{j}}\). Find the path of the particle of mass \(m\). (Recall, \(\vecs F=m\vecs a\).)

    Answer:
    \(\vecs r(t)=\left(\frac{-1}{m}\cos t+c+\frac{1}{m}\right)\,\hat{\mathbf{i}}+\left(\frac{−\sin t}{m}+\left(v_0+\frac{1}{m}\right)t\right)\,\hat{\mathbf{j}}\)

    12)  An automobile that weighs 2700 lb makes a turn on a flat road while traveling at 56 ft/sec. If the radius of the turn is 70 ft, what is the required frictional force to keep the car from skidding?

    13)  Using Kepler’s laws, it can be shown that \(v_0=\sqrt{\frac{2GM}{r_0}}\) is the minimum speed needed when \(\theta=0\) so that an object will escape from the pull of a central force resulting from mass \(M\). Use this result to find the minimum speed when \(\theta=0\) for a space capsule to escape from the gravitational pull of Earth if the probe is at an altitude of 300 km above Earth’s surface.

    Answer:
    10.94 km/sec

    14)  Find the time in years it takes the dwarf planet Pluto to make one orbit about the Sun given that a=39.5 A.U.