\[\int_{\gamma} \dfrac{1}{z} \ dz = \int_{0}^{2\pi} \dfrac{1}{e^{i \theta}} ie^{i \theta} \ dt = \int_{0}^{2\pi} i \ dt = 2\pi i. \nonumber \] (ii) As usual, we parametrize the unit circle as \(\gamma...\[\int_{\gamma} \dfrac{1}{z} \ dz = \int_{0}^{2\pi} \dfrac{1}{e^{i \theta}} ie^{i \theta} \ dt = \int_{0}^{2\pi} i \ dt = 2\pi i. \nonumber \] (ii) As usual, we parametrize the unit circle as \(\gamma (\theta = e^{i \theta}\) with \(0 \le \theta \le 2\pi\). \[\int_{\gamma} \dfrac{1}{z^2} \ dz = \int_{0}^{2 \pi} \dfrac{1}{e^{2i \theta}} ie^{i \theta}\ d \theta = \int_{0}^{2\pi} i e^{-i \theta}\ d \theta = -e^{-i \theta} \vert_{0}^{2\pi} = 0. \nonumber \]