Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 2 results
  • https://math.libretexts.org/Bookshelves/Analysis/Complex_Variables_with_Applications_(Orloff)/04%3A_Line_Integrals_and_Cauchys_Theorem/4.05%3A_Examples
    \[\int_{\gamma} \dfrac{1}{z} \ dz = \int_{0}^{2\pi} \dfrac{1}{e^{i \theta}} ie^{i \theta} \ dt = \int_{0}^{2\pi} i \ dt = 2\pi i. \nonumber \] (ii) As usual, we parametrize the unit circle as \(\gamma...\[\int_{\gamma} \dfrac{1}{z} \ dz = \int_{0}^{2\pi} \dfrac{1}{e^{i \theta}} ie^{i \theta} \ dt = \int_{0}^{2\pi} i \ dt = 2\pi i. \nonumber \] (ii) As usual, we parametrize the unit circle as \(\gamma (\theta = e^{i \theta}\) with \(0 \le \theta \le 2\pi\). \[\int_{\gamma} \dfrac{1}{z^2} \ dz = \int_{0}^{2 \pi} \dfrac{1}{e^{2i \theta}} ie^{i \theta}\ d \theta = \int_{0}^{2\pi} i e^{-i \theta}\ d \theta = -e^{-i \theta} \vert_{0}^{2\pi} = 0. \nonumber \]
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Matrix_Analysis_(Cox)/07%3A_Complex_Analysis_II/7.01%3A_Cauchy's_Theorem
    \[\int z dz =\in_{0}^{2\pi} e^{it}ie^{it} dt = i \int_{0}^{2\pi} e^{i2t} dt = i \int_{0}^{2\pi} \cos(2t)+i \sin(2t) dt = 0 \nonumber\] \[\begin{align*} \int f(z) dz &=\int u(x,y)+iv(x,y) dx+i \int u(x...\[\int z dz =\in_{0}^{2\pi} e^{it}ie^{it} dt = i \int_{0}^{2\pi} e^{i2t} dt = i \int_{0}^{2\pi} \cos(2t)+i \sin(2t) dt = 0 \nonumber\] \[\begin{align*} \int f(z) dz &=\int u(x,y)+iv(x,y) dx+i \int u(x,y)+iv(x,y) dy \\[4pt] &=\int u(x,y)dx - \int v(x,y) dy+i \int v(x,y)dx+i \int u(x,y) dy \\[4pt] &=\int_{a}^{b} u(x(t), y(t))x'(t)-v(x(t), y(t))y'(t) dt+i \int_{a}^{b} u(x(t), y(t))y'(t)+v(x(t), y(t))x'(t) dt \end{align*}\]

Support Center

How can we help?