Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Bookshelves/Precalculus/Precalculus_(Tradler_and_Carley)/14%3A_Properties_of_Exponentials_and_Logarithms/14.01%3A_Algebraic_Properties_of_exp_and_log
    \(\begin{aligned}\log _{2}\left(\sqrt[3]{\dfrac{x^{2}}{y \sqrt{z}}}\right) &=\log _{2}\left(\left(\dfrac{x^{2}}{y \cdot z^{\frac{1}{2}}}\right)^{\frac{1}{3}}\right)=\dfrac{1}{3} \log _{2}\left(\dfrac{...\(\begin{aligned}\log _{2}\left(\sqrt[3]{\dfrac{x^{2}}{y \sqrt{z}}}\right) &=\log _{2}\left(\left(\dfrac{x^{2}}{y \cdot z^{\frac{1}{2}}}\right)^{\frac{1}{3}}\right)=\dfrac{1}{3} \log _{2}\left(\dfrac{x^{2}}{y \cdot z^{\frac{1}{2}}}\right) \\ &=\dfrac{1}{3}\left(\log _{2}\left(x^{2}\right)-\log _{2}(y)-\log _{2}\left(z^{\frac{1}{2}}\right)\right) \\ &=\dfrac{1}{3}\left(2 \log _{2}(x)-\log _{2}(y)-\dfrac{1}{2} \log _{2}(z)\right) \\ &=\dfrac{2}{3} \log _{2}(x)-\dfrac{1}{3} \log _{2}(y)-\dfrac{1}{…
  • https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus/01%3A_Critical_Concepts_for_Calculus/1.05%3A_Exponential_and_Logarithmic_Functions
    In this section, we review exponential and logarithmic functions. In addition, we spend time to review the critical Laws of Logarithms and introduce the number e.
  • https://math.libretexts.org/Courses/Cosumnes_River_College/Math_400%3A_Calculus_I_-_Differential_Calculus/05%3A_Appendix/5.05%3A_A.5-_Exponential_and_Logarithmic_Functions
    In this section, we review exponential and logarithmic functions. In addition, we spend time to review the critical Laws of Logarithms and introduce the number e.

Support Center

How can we help?