Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 1 results
  • https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/An_Introduction_to_Number_Theory_(Veerman)/04%3A_Number_Theoretic_Functions/4.04%3A_New_Page
    From the definition of Euler’s phi function, we see that the cardinality \(|S(d,n)|\) of \(S(d, n)\) is given by \(\varphi(\frac{n}{d})\). \[n = \sum_{d|n} |S(d,n)| = \sum_{d|n} \varphi(\frac{d}{n}) \...From the definition of Euler’s phi function, we see that the cardinality \(|S(d,n)|\) of \(S(d, n)\) is given by \(\varphi(\frac{n}{d})\). \[n = \sum_{d|n} |S(d,n)| = \sum_{d|n} \varphi(\frac{d}{n}) \nonumber\] \[\varphi (n) = \sum_{d|n} \mu (d) \frac{n}{d} = n \sum_{d|n} \frac{\mu (d)}{d} \nonumber\] \[\varphi (\prod_{i=1}^{r} p_{i}^{l_{i}} = \prod_{i=1}^{r} \varphi (p_{i}^{l_{i}}) \nonumber\] \[\varphi (p^l) = p^{l} \sum_{j=0}^{l} \frac{\mu (p^j)}{p^j} = p^{l} (1-\frac{1}{p}) \nonumber\]

Support Center

How can we help?