Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 2 results
  • https://math.libretexts.org/Bookshelves/Applied_Mathematics/Numerical_Methods_(Chasnov)/07%3A_Ordinary_Differential_Equations/7.02%3A_Numerical_Methods_-_Initial_Value_Problem
    Substituting in k_{1} and k_{2}, we have \[x_{n+1}=x_{n}+a \Delta t f\left(t_{n}, x_{n}\right)+b \Delta t f\left(t_{n}+\alpha \Delta t, x_{n}+\beta \Delta t f\left(t_{n}, x_{n}\right)\right) ....Substituting in k_{1} and k_{2}, we have x_{n+1}=x_{n}+a \Delta t f\left(t_{n}, x_{n}\right)+b \Delta t f\left(t_{n}+\alpha \Delta t, x_{n}+\beta \Delta t f\left(t_{n}, x_{n}\right)\right) . \nonumber We Taylor series expand using \[\begin{aligned} f\left(t_{n}+\alpha \Delta t, x_{n}+\beta \Delta t f\left(t_{n}, x_{n}\right)\right) & \\ =f\left(t_{n}, x_{n}\right)+\alpha \Delta t f_{t}\left(t_{n}, x_{n}\right)+\beta \Delta t f\left(t_{n}, x_{n}\right) f_{x}\left(t_{n}, x_{n}\right)…
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Differential_Equations_(Chasnov)/03%3A_First-Order_ODEs/3.01%3A_The_Euler_Method
    The differential equation (3.1) gives us the slope f(x_0, y_0) of the tangent line to the solution curve y = y(x) at the point (x_0, y_0). With a small step size ∆x = x_1 − x_0, the in...The differential equation (3.1) gives us the slope f(x_0, y_0) of the tangent line to the solution curve y = y(x) at the point (x_0, y_0). With a small step size ∆x = x_1 − x_0, the initial condition (x_0, y_0) can be marched forward to (x_1, y_1) along the tangent line using Euler’s method (see Fig. \PageIndex{1}) y_1=y_0+\Delta xf(x_0, y_0).\nonumber

Support Center

How can we help?