Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 2 results
  • https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/An_Inquiry-Based_Approach_to_Abstract_Algebra_(Ernst)/05%3A_Cosets_Lagranges_Theorem_and_Normal_Subgroups/5.02%3A_Lagrange's_Theorem
    We’re finally ready to state Lagrange’s Theorem, which is named after the Italian born mathematician Joseph Louis Lagrange. It turns out that Lagrange did not actually prove the theorem that is named ...We’re finally ready to state Lagrange’s Theorem, which is named after the Italian born mathematician Joseph Louis Lagrange. It turns out that Lagrange did not actually prove the theorem that is named after him. The theorem was actually proved by Carl Friedrich Gauss in 1801.
  • https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Elementary_Abstract_Algebra_(Clark)/01%3A_Chapters/1.08%3A_Cosets_and_Lagrange's_Theorem
    Note that each corresponds to a way of factoring 72 as a product of prime powers. \[\begin{array} {ll} \mathbb{Z}_9 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 & \qquad 72 = 9 \cdot 2 ...Note that each corresponds to a way of factoring 72 as a product of prime powers. \[\begin{array} {ll} \mathbb{Z}_9 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 & \qquad 72 = 9 \cdot 2 \cdot 2 \cdot 2 \\ \mathbb{Z}_9 \times \mathbb{Z}_4 \times \mathbb{Z}_2 & \qquad 72 = 9 \cdot 4 \cdot 2 \\ \mathbb{Z}_9 \times \mathbb{Z}_8 & \qquad 72 = 9 \cdot 8 \\ \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 & \qquad 72 = 3 \cdot 3 \cdot 2 \cdot 2…

Support Center

How can we help?