Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Method_of_Lagrange_Multipliers_(Trench)/1%3A_Introduction_to_Lagrange_Multipliers
    \[\label{eq:6} \left|\begin{array}{ccccccc} \displaystyle{\frac{\partial{g_{1}(\mathbf{X}_{0})}}{\partial{x_{r_{1}}}}} & \displaystyle{\frac{\partial{g_{1}(\mathbf{X}_{0})}}{\partial{x_{r_{2}}}}}& &\c...\[\label{eq:6} \left|\begin{array}{ccccccc} \displaystyle{\frac{\partial{g_{1}(\mathbf{X}_{0})}}{\partial{x_{r_{1}}}}} & \displaystyle{\frac{\partial{g_{1}(\mathbf{X}_{0})}}{\partial{x_{r_{2}}}}}& &\cdots & \displaystyle{\frac{\partial{g_{1}(\mathbf{X}_{0})}}{\partial{x_{r_{m}}}}} \\\\ \displaystyle{\frac{\partial{g_{2}(\mathbf{X}_{0})}}{\partial{x_{r_{1}}}}} & \displaystyle{\frac{\partial{g_{2}(\mathbf{X}_{0})}}{\partial{x_{r_{2}}}}}& &\cdots & \displaystyle{\frac{\partial{g_{m}(\mathbf{X}_{0}…
  • https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Method_of_Lagrange_Multipliers_(Trench)
  • https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins_et_al.)/10%3A_Derivatives_of_Multivariable_Functions/10.08%3A_Constrained_Optimization-_Lagrange_Multipliers
    Some optimization problems involve maximizing or minimizing a quantity subject to an external constraint. In these cases the extreme values frequently won't occur at the points where the gradient is z...Some optimization problems involve maximizing or minimizing a quantity subject to an external constraint. In these cases the extreme values frequently won't occur at the points where the gradient is zero, but rather at other points that satisfy an important geometric condition. These problems are often called constrained optimization problems and can be solved with the method of Lagrange Multipliers, which we study in this section.

Support Center

How can we help?