Search
- Filter Results
- Location
- Classification
- Include attachments
- https://math.libretexts.org/Courses/Queens_College/Preparing_for_Calculus_Bootcamp_(Gangaram)/05%3A_Day_5/5.05%3A_Laws_of_Logarithms\[\begin{align*} {\log}_6\left (\dfrac{64x^3(4x+1)}{(2x-1)} \right )&= {\log}_664+{\log}_6x^3+{\log}_6(4x+1)-{\log}_6(2x-1)\qquad \text{Apply the Quotient Rule}\\[4pt] &= {\log}_62^6+{\log}_6x^3+{\log...log6(64x3(4x+1)(2x−1))=log664+log6x3+log6(4x+1)−log6(2x−1)Apply the Quotient Rule=log626+log6x3+log6(4x+1)−log6(2x−1)Simplify by writing 64 as 26=6log62+3log6x+log6(4x+1)−log6(2x−1)Apply the Power Rule
- https://math.libretexts.org/Courses/Highline_College/MATH_141%3A_Precalculus_I_(2nd_Edition)/04%3A_Exponential_and_Logarithmic_Functions/4.06%3A_Laws_of_Logarithms\[\begin{align*} {\log}_6\left (\dfrac{64x^3(4x+1)}{(2x-1)} \right )&= {\log}_664+{\log}_6x^3+{\log}_6(4x+1)-{\log}_6(2x-1)\qquad \text{Apply the Quotient Rule}\\[4pt] &= {\log}_62^6+{\log}_6x^3+{\log...log6(64x3(4x+1)(2x−1))=log664+log6x3+log6(4x+1)−log6(2x−1)Apply the Quotient Rule=log626+log6x3+log6(4x+1)−log6(2x−1)Simplify by writing 64 as 26=6log62+3log6x+log6(4x+1)−log6(2x−1)Apply the Power Rule
- https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus/01%3A_Critical_Concepts_for_Calculus/1.05%3A_Exponential_and_Logarithmic_FunctionsIn this section, we review exponential and logarithmic functions. In addition, we spend time to review the critical Laws of Logarithms and introduce the number e.
- https://math.libretexts.org/Courses/Cosumnes_River_College/Math_400%3A_Calculus_I_-_Differential_Calculus/05%3A_Appendix/5.05%3A_A.5-_Exponential_and_Logarithmic_FunctionsIn this section, we review exponential and logarithmic functions. In addition, we spend time to review the critical Laws of Logarithms and introduce the number e.
- https://math.libretexts.org/Courses/Coastline_College/Math_C097%3A_Support_for_Precalculus_Corequisite%3A_MATH_C170/1.05%3A_Exponential_and_Logarithmic_Functions/1.5.06%3A_Laws_of_Logarithms\[\begin{align*} {\log}_6\left (\dfrac{64x^3(4x+1)}{(2x-1)} \right )&= {\log}_664+{\log}_6x^3+{\log}_6(4x+1)-{\log}_6(2x-1)\qquad \text{Apply the Quotient Rule}\\[4pt] &= {\log}_62^6+{\log}_6x^3+{\log...log6(64x3(4x+1)(2x−1))=log664+log6x3+log6(4x+1)−log6(2x−1)Apply the Quotient Rule=log626+log6x3+log6(4x+1)−log6(2x−1)Simplify by writing 64 as 26=6log62+3log6x+log6(4x+1)−log6(2x−1)Apply the Power Rule
- https://math.libretexts.org/Courses/Highline_College/MATHP_141%3A_Corequisite_Precalculus/05%3A_Exponential_and_Logarithmic_Functions/5.06%3A_Laws_of_Logarithms\[\begin{align*} {\log}_6\left (\dfrac{64x^3(4x+1)}{(2x-1)} \right )&= {\log}_664+{\log}_6x^3+{\log}_6(4x+1)-{\log}_6(2x-1)\qquad \text{Apply the Quotient Rule}\\[4pt] &= {\log}_62^6+{\log}_6x^3+{\log...log6(64x3(4x+1)(2x−1))=log664+log6x3+log6(4x+1)−log6(2x−1)Apply the Quotient Rule=log626+log6x3+log6(4x+1)−log6(2x−1)Simplify by writing 64 as 26=6log62+3log6x+log6(4x+1)−log6(2x−1)Apply the Power Rule