Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 6 results
  • https://math.libretexts.org/Courses/Queens_College/Preparing_for_Calculus_Bootcamp_(Gangaram)/05%3A_Day_5/5.05%3A_Laws_of_Logarithms
    \[\begin{align*} {\log}_6\left (\dfrac{64x^3(4x+1)}{(2x-1)} \right )&= {\log}_664+{\log}_6x^3+{\log}_6(4x+1)-{\log}_6(2x-1)\qquad \text{Apply the Quotient Rule}\\[4pt] &= {\log}_62^6+{\log}_6x^3+{\log...log6(64x3(4x+1)(2x1))=log664+log6x3+log6(4x+1)log6(2x1)Apply the Quotient Rule=log626+log6x3+log6(4x+1)log6(2x1)Simplify by writing 64 as 26=6log62+3log6x+log6(4x+1)log6(2x1)Apply the Power Rule
  • https://math.libretexts.org/Courses/Highline_College/MATH_141%3A_Precalculus_I_(2nd_Edition)/04%3A_Exponential_and_Logarithmic_Functions/4.06%3A_Laws_of_Logarithms
    \[\begin{align*} {\log}_6\left (\dfrac{64x^3(4x+1)}{(2x-1)} \right )&= {\log}_664+{\log}_6x^3+{\log}_6(4x+1)-{\log}_6(2x-1)\qquad \text{Apply the Quotient Rule}\\[4pt] &= {\log}_62^6+{\log}_6x^3+{\log...log6(64x3(4x+1)(2x1))=log664+log6x3+log6(4x+1)log6(2x1)Apply the Quotient Rule=log626+log6x3+log6(4x+1)log6(2x1)Simplify by writing 64 as 26=6log62+3log6x+log6(4x+1)log6(2x1)Apply the Power Rule
  • https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus/01%3A_Critical_Concepts_for_Calculus/1.05%3A_Exponential_and_Logarithmic_Functions
    In this section, we review exponential and logarithmic functions. In addition, we spend time to review the critical Laws of Logarithms and introduce the number e.
  • https://math.libretexts.org/Courses/Cosumnes_River_College/Math_400%3A_Calculus_I_-_Differential_Calculus/05%3A_Appendix/5.05%3A_A.5-_Exponential_and_Logarithmic_Functions
    In this section, we review exponential and logarithmic functions. In addition, we spend time to review the critical Laws of Logarithms and introduce the number e.
  • https://math.libretexts.org/Courses/Coastline_College/Math_C097%3A_Support_for_Precalculus_Corequisite%3A_MATH_C170/1.05%3A_Exponential_and_Logarithmic_Functions/1.5.06%3A_Laws_of_Logarithms
    \[\begin{align*} {\log}_6\left (\dfrac{64x^3(4x+1)}{(2x-1)} \right )&= {\log}_664+{\log}_6x^3+{\log}_6(4x+1)-{\log}_6(2x-1)\qquad \text{Apply the Quotient Rule}\\[4pt] &= {\log}_62^6+{\log}_6x^3+{\log...log6(64x3(4x+1)(2x1))=log664+log6x3+log6(4x+1)log6(2x1)Apply the Quotient Rule=log626+log6x3+log6(4x+1)log6(2x1)Simplify by writing 64 as 26=6log62+3log6x+log6(4x+1)log6(2x1)Apply the Power Rule
  • https://math.libretexts.org/Courses/Highline_College/MATHP_141%3A_Corequisite_Precalculus/05%3A_Exponential_and_Logarithmic_Functions/5.06%3A_Laws_of_Logarithms
    \[\begin{align*} {\log}_6\left (\dfrac{64x^3(4x+1)}{(2x-1)} \right )&= {\log}_664+{\log}_6x^3+{\log}_6(4x+1)-{\log}_6(2x-1)\qquad \text{Apply the Quotient Rule}\\[4pt] &= {\log}_62^6+{\log}_6x^3+{\log...log6(64x3(4x+1)(2x1))=log664+log6x3+log6(4x+1)log6(2x1)Apply the Quotient Rule=log626+log6x3+log6(4x+1)log6(2x1)Simplify by writing 64 as 26=6log62+3log6x+log6(4x+1)log6(2x1)Apply the Power Rule

Support Center

How can we help?