Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 1 results
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Partial_Differential_Equations_(Miersemann)/6%3A_Parabolic_Equations/6.1%3A_Poisson's_Formula
    \int_{\mathbb{R}^n\setminus B_\delta(x)}\ K(x,y,t)\ dy&=& \int_{\mathbb{R}^n\setminus B_\delta(x)}\ (4\pi t)^{-n/2}e^{-|x-y|^2/4t}\ dy\\ Then u(x,t) given by Poisson's formula (\ref{poisson1}) is ...\int_{\mathbb{R}^n\setminus B_\delta(x)}\ K(x,y,t)\ dy&=& \int_{\mathbb{R}^n\setminus B_\delta(x)}\ (4\pi t)^{-n/2}e^{-|x-y|^2/4t}\ dy\\ Then u(x,t) given by Poisson's formula (\ref{poisson1}) is in C^{\infty}(\mathbb{R}^n\times\mathbb{R}^1_+), continuous on \mathbb{R}^n\times[0,\infty) and a solution of the initial value problem (6.2), (6.3). u(x,t)-\phi(\xi)=\int_{\mathbb{R}^n}\ K(x,y,t)\left(\phi(y)-\phi(\xi)\right)\ dy.

Support Center

How can we help?