Let a, b, c,d, \in \mathbb{Z} such that a \equiv b (mod\,n) and c \equiv d (mod\, n). Then (a+c) \equiv (b+d)(mod\, n). Let a, b, c, d \in\mathbb{Z}, such that \(a \equiv b (mod...Let a, b, c,d, \in \mathbb{Z} such that a \equiv b (mod\,n) and c \equiv d (mod\, n). Then (a+c) \equiv (b+d)(mod\, n). Let a, b, c, d \in\mathbb{Z}, such that a \equiv b (mod\, n) and c \equiv d (mod \,n). Let a, b, c,d, \in \mathbb{Z} such that a \equiv b (mod \, n) and c \equiv d (mod \,n). Then (ac) \equiv (bd) (mod \,n). Let a, b, c, d \in \mathbb{Z}, such that a \equiv b (mod\, n) and c \equiv d (mod \, n).