Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Bookshelves/Calculus/Calculus_3e_(Apex)/11%3A_Vector-Valued_Functions/11.04%3A_Unit_Tangent_and_Normal_Vectors
    Given a smooth vector-valued function r(t) , we defined that any vector parallel to r(t₀) is tangent to the graph of r(t) at t=t₀. It is often useful to consider just the direction of r⃗ ′(t) ...Given a smooth vector-valued function r(t) , we defined that any vector parallel to r(t₀) is tangent to the graph of r(t) at t=t₀. It is often useful to consider just the direction of r⃗ ′(t) and not its magnitude. Therefore we are interested in the unit vector in the direction of r(t) . This leads to a definition of the unit tangent vector.
  • https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Vector_Calculus/2%3A_Vector-Valued_Functions_and_Motion_in_Space/2.2%3A_Arc_Length_in_Space
    For this topic, we will be learning how to calculate the length of a curve in space. The ideas behind this topic are very similar to calculating arc length for a curve in with x and y components, but ...For this topic, we will be learning how to calculate the length of a curve in space. The ideas behind this topic are very similar to calculating arc length for a curve in with x and y components, but now, we are considering a third component, z.
  • https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Vector_Calculus/2%3A_Vector-Valued_Functions_and_Motion_in_Space/2.4%3A_The_Unit_Tangent_and_the_Unit_Normal_Vectors
    The derivative of a vector valued function gives a new vector valued function that is tangent to the defined curve. The analog to the slope of the tangent line is the direction of the tangent line. Si...The derivative of a vector valued function gives a new vector valued function that is tangent to the defined curve. The analog to the slope of the tangent line is the direction of the tangent line. Since a vector contains a magnitude and a direction, the velocity vector contains more information than we need. We can strip a vector of its magnitude by dividing by its magnitude.

Support Center

How can we help?