Search
- https://math.libretexts.org/Courses/Monroe_Community_College/MTH_225_Differential_Equations/10%3A_Linear_Systems_of_Differential_Equations/10.07%3A_Variation_of_Parameters_for_Nonhomogeneous_Linear_SystemsWe now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems. This method will produce a particular solution of a nonhomogenous system y′=A(t)y+f(t) provided...We now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems. This method will produce a particular solution of a nonhomogenous system y′=A(t)y+f(t) provided that we know a fundamental matrix for the complementary system.
- https://math.libretexts.org/Courses/Cosumnes_River_College/Math_420%3A_Differential_Equations_(Breitenbach)/10%3A_Linear_Systems_of_Differential_Equations/06%3A_Variation_of_Parameters_for_Nonhomogeneous_Linear_Systems\[\begin{array}{cccccccc}{u_{1}'}&{=}&{-\frac{1}{e^{2t}}}&{\left|\begin{array}{ccc}{e^{t}}&{e^{t}}&{e^{t}}\\{0}&{e^{t}}&{0}\\{e^{-t}}&{0}&{e^{t}}\end{array} \right|}&{=}&{-\frac{e^{3t}-e^{t}}{e^{2t}}}...\[\begin{array}{cccccccc}{u_{1}'}&{=}&{-\frac{1}{e^{2t}}}&{\left|\begin{array}{ccc}{e^{t}}&{e^{t}}&{e^{t}}\\{0}&{e^{t}}&{0}\\{e^{-t}}&{0}&{e^{t}}\end{array} \right|}&{=}&{-\frac{e^{3t}-e^{t}}{e^{2t}}}&{=}&{e^{-t}-e^{t}}\\{u_{2}'}&{=}&{-\frac{1}{e^{2t}}}&{\left|\begin{array}{ccc}{1}&{e^{t}}&{e^{t}}\\{1}&{0}&{0}\\{1}&{e^{-t}}&{e^{t}}\end{array} \right|}&{=}&{-\frac{1-e^{2t}}{e^{2t}}}&{=}&{1-e^{-2t}}\\{u_{3}'}&{=}&{-\frac{1}{e^{2t}}}&{\left|\begin{array}{ccc}{1}&{e^{t}}&{e^{t}}\\{1}&{e^{t}}&{0}\\{…
- https://math.libretexts.org/Bookshelves/Differential_Equations/Elementary_Differential_Equations_with_Boundary_Value_Problems_(Trench)/10%3A_Linear_Systems_of_Differential_Equations/10.07%3A_Variation_of_Parameters_for_Nonhomogeneous_Linear_SystemsWe now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems. This method will produce a particular solution of a nonhomogenous system y′=A(t)y+f(t) provided...We now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems. This method will produce a particular solution of a nonhomogenous system y′=A(t)y+f(t) provided that we know a fundamental matrix for the complementary system.
- https://math.libretexts.org/Courses/Chabot_College/Math_4%3A_Differential_Equations_(Dinh)/08%3A_Linear_Systems_of_Differential_Equations/8.07%3A_Variation_of_Parameters_for_Nonhomogeneous_Linear_SystemsWe now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems. This method will produce a particular solution of a nonhomogenous system y′=A(t)y+f(t) provided...We now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems. This method will produce a particular solution of a nonhomogenous system y′=A(t)y+f(t) provided that we know a fundamental matrix for the complementary system.
- https://math.libretexts.org/Courses/Red_Rocks_Community_College/MAT_2561_Differential_Equations_with_Engineering_Applications/09%3A_Linear_Systems_of_Differential_Equations/9.07%3A_Variation_of_Parameters_for_Nonhomogeneous_Linear_SystemsWe now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems. This method will produce a particular solution of a nonhomogenous system y′=A(t)y+f(t) provided...We now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems. This method will produce a particular solution of a nonhomogenous system y′=A(t)y+f(t) provided that we know a fundamental matrix for the complementary system.