Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 2 results
  • https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_Through_Guided_Discovery_(Bogart)/06%3A_Groups_Acting_on_Sets/6.03%3A_Polya-Redfield_Enumeration_Theory
    George Pólya and Robert Redfield independently developed a theory of generating functions that describe the action of a group G on colorings of a set S by a set T when we know the action of G on S. Pó...George Pólya and Robert Redfield independently developed a theory of generating functions that describe the action of a group G on colorings of a set S by a set T when we know the action of G on S. Pólya’s work on the subject is very accessible in its exposition, and so the subject has become popularly known as Pólya theory, though Pólya-Redfield theory would be a better name. In this section we develop the elements of this theory.
  • https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_and_Graph_Theory_(Guichard)/06%3A_PolyaRedfield_Counting/6.04%3A_P%C3%B3lya-Redfield_Counting
    def nextpar(mults, n): if mults == []: return Partitions(n).first().to_exp(n) p = Partition(exp=mults).next() if p != False: return(p.to_exp(n)) else: return p def polya(n): var("x"); global y; y = li...def nextpar(mults, n): if mults == []: return Partitions(n).first().to_exp(n) p = Partition(exp=mults).next() if p != False: return(p.to_exp(n)) else: return p def polya(n): var("x"); global y; y = list(var('x_%d' % i) for i in range(binomial(n,2)+1)); max_sub = n; j = Partition([0]); j = nextpar(j,n); p=0; lim1 = floor(n / 2); lim2 = floor((n-1) / 2); while j != False: t = 1; for k in range(1,lim1+1): if j[2*k-1] > 0: t = t * y[k]^j[2*k-1]; if (j[2*k-1] > 0) and (k > 1): t = t * y[2*k]^((k-1)*…

Support Center

How can we help?