Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 1 results
  • https://math.libretexts.org/Bookshelves/Applied_Mathematics/Mathematical_Biology_(Chasnov)/05%3A_Population_Genetics/5.05%3A_Random_Genetic_Drift
    and note that \(S(x)=x .\) Similarly, we have \(s_{n+1}=S(x+\Delta x)\) and \(s_{n-1}=S(x-\Delta x)\), where \(\Delta x=1 / N .\) Then, with \(\Delta t=2 / N,(5.5.4)\) transforms into<\p> \[\begin{ali...and note that \(S(x)=x .\) Similarly, we have \(s_{n+1}=S(x+\Delta x)\) and \(s_{n-1}=S(x-\Delta x)\), where \(\Delta x=1 / N .\) Then, with \(\Delta t=2 / N,(5.5.4)\) transforms into<\p> \[\begin{align} \nonumber P(x, t&+\Delta t)-P(x, t)=S(x+\Delta x)(1-S(x+\Delta x)) P(x+\Delta x, t) \\[4pt] &-2 S(x)(1-S(x)) P(x, t)+S(x-\Delta x)(1-S(x-\Delta x)) P(x-\Delta x, t) \end{align} \nonumber \] To simplify further, we use the well-known central-difference approximation to the second-derivative of a…

Support Center

How can we help?