In single variable calculus we saw that the second derivative is often useful: in appropriate circumstances it measures acceleration; it can be used to identify maximum and minimum points; it tells us...In single variable calculus we saw that the second derivative is often useful: in appropriate circumstances it measures acceleration; it can be used to identify maximum and minimum points; it tells us something about how sharply curved a graph is. Not surprisingly, second derivatives are also useful in the multi-variable case, but again not surprisingly, things are a bit more complicated.
The derivative of a function f(x) is the function whose value at x is f′(x). The graph of a derivative of a function f(x) is related to the graph of f(x). Where (f(x) has a tangent line with positive ...The derivative of a function f(x) is the function whose value at x is f′(x). The graph of a derivative of a function f(x) is related to the graph of f(x). Where (f(x) has a tangent line with positive slope, f′(x)>0. Where (x) has a tangent line with negative slope, f′(x)<0. Where f(x) has a horizontal tangent line, f′(x)=0. If a function is differentiable at a point, then it is continuous at that point.