Loading [MathJax]/extensions/TeX/cancel.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 9 results
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Elementary_Differential_Equations_with_Boundary_Value_Problems_(Trench)/08%3A_Laplace_Transforms/8.03%3A_Solution_of_Initial_Value_Problems
    This section applies the Laplace transform to solve initial value problems for constant coefficient second order differential equations on (0,∞).
  • https://math.libretexts.org/Courses/Cosumnes_River_College/Math_420%3A_Differential_Equations_(Breitenbach)/09%3A_Laplace_Transforms/9.03%3A_Solution_of_Initial_Value_Problems
    \[{\cal L}\left(\sin(\omega t)\right)={\cal L}\left({-1\over \omega}{d\over dt}\cos(\omega t)\right)={-1\over \omega}{\cal L}\left({d\over dt}\cos(\omega t)\right)={-1\over \omega}\left(s{\cal L}(\cos...\[{\cal L}\left(\sin(\omega t)\right)={\cal L}\left({-1\over \omega}{d\over dt}\cos(\omega t)\right)={-1\over \omega}{\cal L}\left({d\over dt}\cos(\omega t)\right)={-1\over \omega}\left(s{\cal L}(\cos(\omega t)-\cos(0)\right)={-1\over \omega}\left(s {s\over s^2+\omega^2}-1\right)={-1\over \omega} {-\omega^2\over s^2+\omega^2}={\omega\over s^2+\omega^2}.\nonumber\] \[{\cal L}(f'')=s{\cal L}(f')-f'(0)=s(s{\cal L}(f)-f(0))-f'(0)=s^2{\cal L}(f)-sf(0)-f'(0),\nonumber\]
  • https://math.libretexts.org/Courses/De_Anza_College/Introductory_Differential_Equations/01%3A_First_Order_ODEs/1.07%3A_Existence_and_Uniqueness_of_Solutions_of_Nonlinear_Equations
    Although there are methods for solving some nonlinear equations, it is impossible to find useful formulas for the solutions of most. Whether we are looking for exact solutions or numerical approximati...Although there are methods for solving some nonlinear equations, it is impossible to find useful formulas for the solutions of most. Whether we are looking for exact solutions or numerical approximations, it is useful to know conditions that imply the existence and uniqueness of solutions of initial value problems for nonlinear equations. In this section we state such a condition and illustrate it with examples.
  • https://math.libretexts.org/Courses/Reedley_College/Differential_Equations_and_Linear_Algebra_(Zook)/13%3A_Laplace_Transforms/13.03%3A_Solution_of_Initial_Value_Problems
    This section applies the Laplace transform to solve initial value problems for constant coefficient second order differential equations on (0,∞).
  • https://math.libretexts.org/Courses/Community_College_of_Denver/MAT_2562_Differential_Equations_with_Linear_Algebra/08%3A_Laplace_Transforms/8.03%3A_Solution_of_Initial_Value_Problems
    This section applies the Laplace transform to solve initial value problems for constant coefficient second order differential equations on (0,∞).
  • https://math.libretexts.org/Courses/Chabot_College/Math_4%3A_Differential_Equations_(Dinh)/06%3A_Laplace_Transforms/6.03%3A_Solution_of_Initial_Value_Problems
    This section applies the Laplace transform to solve initial value problems for constant coefficient second order differential equations on (0,∞).
  • https://math.libretexts.org/Courses/Mission_College/Math_4B%3A_Differential_Equations_(Reed)/07%3A_Laplace_Transforms/7.03%3A_Solution_of_Initial_Value_Problems
    This section applies the Laplace transform to solve initial value problems for constant coefficient second order differential equations on (0,∞).
  • https://math.libretexts.org/Courses/Mt._San_Jacinto_College/Differential_Equations_(No_Linear_Algebra_Required)/07%3A_Laplace_Transform/7.03%3A_Solution_of_Initial_Value_Problems
    \[{\cal L}^{-1}(Y(s))={1\over9}{\cal L}^{-1}\Big({1\over s^2}\Big)-{1\over81}{\cal L}^{-1}\Big({1\over s}\Big)+{82\over81}{\cal L}^{-1}\Big({1\over s+9}\Big),\nonumber \] \[{\cal L}^{-1}(Y(s))=-{\cal ...\[{\cal L}^{-1}(Y(s))={1\over9}{\cal L}^{-1}\Big({1\over s^2}\Big)-{1\over81}{\cal L}^{-1}\Big({1\over s}\Big)+{82\over81}{\cal L}^{-1}\Big({1\over s+9}\Big),\nonumber \] \[{\cal L}^{-1}(Y(s))=-{\cal L}^{-1}\Big({1\over s-2}\Big)+{1\over2}{\cal L}^{-1}\Big({1\over s-5}\Big)+{5\over2}{\cal L}^{-1}\Big({1\over s-1}\Big),\nonumber \] \[{\cal L}^{-1}(Y(s))={4\over3}{\cal L}^{-1}\Big({1\over s+1/2}\Big)-8{\cal L}^{-1}\Big({1\over s+1}\Big)+{8\over3}{\cal L}^{-1}\Big({1\over s+2}\Big),\nonumber \]
  • https://math.libretexts.org/Courses/Mission_College/Math_4B%3A_Differential_Equations_(Kravets)/07%3A_Laplace_Transforms/7.03%3A_Solution_of_Initial_Value_Problems
    This section applies the Laplace transform to solve initial value problems for constant coefficient second order differential equations on (0,∞).

Support Center

How can we help?