Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 41 results
  • https://math.libretexts.org/Courses/Coastline_College/Math_C185%3A_Calculus_II_(Tran)/02%3A_Integration/2.04%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/Mission_College/Math_3A%3A_Calculus_1_(Sklar)/05%3A_Integration/5.02%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/City_University_of_New_York/Calculus_I_(CUNY)/05%3A_Integration/5.02%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/Chabot_College/MTH_1%3A_Calculus_I/05%3A_Integration/5.02%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/Mission_College/MAT_3B_Calculus_II_(Kravets)/05%3A_Integration/5.02%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/Irvine_Valley_College/Math_4A%3A_Multivariable_Calculus/03%3A_Multiple_Integration/3.02%3A_Triple_Integrals_and_Polar_Double_Integrals
    Previously, we discussed the double integral of a function \(f(x,y)\) of two variables over a rectangular region in the plane. In this section we define the triple integral of a function \(f(x,y,z)\) ...Previously, we discussed the double integral of a function \(f(x,y)\) of two variables over a rectangular region in the plane. In this section we define the triple integral of a function \(f(x,y,z)\) of three variables over a rectangular solid box in space, \(\mathbb{R}^3\). Returning to double integrals, we see that not all regions are Type I or Type II and sometimes they are much easier to evaluate if we change rectangular coordinates to polar coordinates.
  • https://math.libretexts.org/Courses/Mission_College/MAT_003A_Calculus_I_(Fineman)/05%3A_Integration/5.02%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/Monroe_Community_College/MTH_211_Calculus_II/Chapter_5%3A_Integration/5.2%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/Reedley_College/Calculus_I_(Casteel)/05%3A_Integration/5.02%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/Mission_College/Math_3B%3A_Calculus_2_(Sklar)/05%3A_Integration/5.02%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.
  • https://math.libretexts.org/Courses/Mission_College/Math_3A%3A_Calculus_I_(Kravets)/05%3A_Integration/5.02%3A_The_Definite_Integral
    If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exi...If f(x) is a function defined on an interval [a,b], the definite integral of f from a to b is given by \[∫^b_af(x)dx=\lim_{n→∞} \sum_{i=1}^nf(x^∗_i)Δx,\] provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a,b], or is an integrable function. The numbers a and b are called the limits of integration; specifically, a is the lower limit and b is the upper limit. The function f(x) is the integrand, and x is the variable of integration.

Support Center

How can we help?