Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 11 results
  • https://math.libretexts.org/Courses/Mission_College/Math_4A%3A_Multivariable_Calculus_(Kravets)/01%3A_Vectors_in_Space/1.07%3A_Cylindrical_and_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Under_Construction/Purgatory/MAT-004A_-_Multivariable_Calculus_(Reed)/01%3A_Vectors_in_Space/1.07%3A_Cylindrical_and_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Courses/SUNY_Geneseo/Math_223_Calculus_3/01%3A_Vectors_in_Space/1.06%3A_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Courses/Mission_College/Math_4A%3A_Multivariable_Calculus_v2_(Reed)/12%3A_Vectors_in_Space/12.06%3A_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q3/04%3A_Vectors_in_Space/4.07%3A_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus/12%3A_Vectors_in_Space/12.07%3A_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Courses/De_Anza_College/Calculus_III%3A_Series_and_Vector_Calculus/04%3A_Vectors_in_Space/4.06%3A_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Courses/University_of_Maryland/MATH_241/01%3A_Vectors_in_Space/1.07%3A_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Courses/De_Anza_College/Math_1D%3A_De_Anza/03%3A_Vector_Calculus/3.09%3A_The_Divergence_Theorem/3.9E%3A_Exercises
    This page contains exercises on evaluating surface integrals using the divergence theorem, involving various vector fields and geometric surfaces such as cubes, spheres, and paraboloids. Specific prob...This page contains exercises on evaluating surface integrals using the divergence theorem, involving various vector fields and geometric surfaces such as cubes, spheres, and paraboloids. Specific problems cover calculating flux integrals with numerical results provided. Additionally, it discusses heat flow in a medium, using defined temperature functions to calculate net outward heat flux through boundaries.
  • https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/12%3A_Vectors_in_Space/12.06%3A_Quadric_Surfaces
    We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes...We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.
  • https://math.libretexts.org/Courses/De_Anza_College/Math_1D%3A_De_Anza/03%3A_Vector_Calculus/3.08%3A_Stokes_Theorem/3.8E%3A_Exercises
    This page presents a collection of exercises focused on vector calculus, particularly surface and circulation integrals utilizing Stokes' theorem. It includes various geometric scenarios such as hemis...This page presents a collection of exercises focused on vector calculus, particularly surface and circulation integrals utilizing Stokes' theorem. It includes various geometric scenarios such as hemispheres, triangles, and paraboloids, alongside detailed solutions showing specific numerical results. The text emphasizes computing the curl of vector fields and using computer algebra to approximate integrals.

Support Center

How can we help?