Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 2 results
  • https://math.libretexts.org/Bookshelves/Analysis/Tasty_Bits_of_Several_Complex_Variables_(Lebl)/02%3A_Convexity_and_Pseudoconvexity/2.03%3A_Holomorphic_Vectors_the_Levi_Form_and_Pseudoconvexity
    \[ \begin{align}\begin{aligned} \frac{\partial^2 (r \circ f)}{\partial z_j \partial z_k} \bigg|_{(z,\bar{z})} & = \frac{\partial}{\partial z_j } \sum_{\ell=1}^n \biggl( \frac{\partial r}{\partial \zet...\[ \begin{align}\begin{aligned} \frac{\partial^2 (r \circ f)}{\partial z_j \partial z_k} \bigg|_{(z,\bar{z})} & = \frac{\partial}{\partial z_j } \sum_{\ell=1}^n \biggl( \frac{\partial r}{\partial \zeta_\ell} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial f_\ell}{\partial z_k} \bigg|_{z} + \frac{\partial r}{\partial \bar{\zeta}_\ell} \bigg|_{(f(z),\bar{f}(\bar{z}))} \cancelto{0}{\frac{\partial \bar{f}_\ell}{\partial z_k} \bigg|_{\bar{z}}} \biggr) \\ & = \sum_{\ell,m=1}^n \biggl( \frac{\partial^…
  • https://math.libretexts.org/Bookshelves/Analysis/Tasty_Bits_of_Several_Complex_Variables_(Lebl)/02%3A_Convexity_and_Pseudoconvexity/2.05%3A_Hartogs_Pseudoconvexity
    Again using Cauchy–Schwarz \[\begin{align}\begin{aligned} \sum_{j=1,\ell=1}^n \bar{c}_j c_\ell \frac{\partial^2 r}{\partial \bar{z}_j \partial z_\ell} \Big|_q & = \sum_{j=1,\ell=1}^n ( \bar{a}_j + \ba...Again using Cauchy–Schwarz \[\begin{align}\begin{aligned} \sum_{j=1,\ell=1}^n \bar{c}_j c_\ell \frac{\partial^2 r}{\partial \bar{z}_j \partial z_\ell} \Big|_q & = \sum_{j=1,\ell=1}^n ( \bar{a}_j + \bar{b}_j ) (a_\ell + b_\ell) \frac{\partial^2 r}{\partial \bar{z}_j \partial z_\ell} \Big|_q \\ & = \sum_{j=1,\ell=1}^n \bar{a}_j a_\ell \frac{\partial^2 r}{\partial \bar{z}_j \partial z_\ell} \Big|_q \\ & \phantom{=} \quad + \sum_{j=1,\ell=1}^n \bar{b}_j c_\ell \frac{\partial^2 r}{\partial \bar{z}_j…

Support Center

How can we help?