Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 1 results
  • https://math.libretexts.org/Bookshelves/Analysis/Tasty_Bits_of_Several_Complex_Variables_(Lebl)/06%3A_Complex_Analytic_Varieties/6.05%3A_Varieties
    We define the dimension of X at p to be \[\dim_p X \overset{\text{def}}{=} \max \bigl\{ k \in \mathbb{N}_0 : \text{ $\forall$ neighbhds. $W$ of $p$, $\exists \, q \in W \cap X_{\mathit{reg}}$ ...We define the dimension of X at p to be dimpXdef=max{kN0:  neighbhds. W of pqWXreg with dimqX=k}. If (X,p) is a germ and X a representative, the dimension of (X,p) is the dimension of X at p.

Support Center

How can we help?