Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 1 results
  • https://math.libretexts.org/Bookshelves/Analysis/Tasty_Bits_of_Several_Complex_Variables_(Lebl)/06%3A_Complex_Analytic_Varieties/6.04%3A_Properties_of_the_Ring_of_Germs
    Given a commutative ring \(R\), an ideal \(I \subset R\) is a subset such that \(f g \in I\) whenever \(f \in R\) and \(g \in I\) and \(g+h \in I\) whenever \(g,h \in I\). Show that if \(I \subsetneq ...Given a commutative ring \(R\), an ideal \(I \subset R\) is a subset such that \(f g \in I\) whenever \(f \in R\) and \(g \in I\) and \(g+h \in I\) whenever \(g,h \in I\). Show that if \(I \subsetneq \mathcal{O}_p\) is a proper ideal (ideal such that \(I \not= \mathcal{O}_0\)), then \(I \subset \mathfrak{m}_p\), that is \(\mathfrak{m}_p\) is a maximal ideal.

Support Center

How can we help?