Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 4 results
  • https://math.libretexts.org/Courses/Coastline_College/Math_C104%3A_Mathematics_for_Elementary_Teachers_(Tran)/11%3A_Fraction_Operations/11.11%3A_Algebra_Connections
    \[\frac{(\frac{1}{x} + 1) \cdot x}{(\frac{1}{x}) \cdot x} = \frac{1 + x}{3}, \nonumber \] \[\frac{(\frac{1}{a} - \frac{1}{b}) \cdot a \cdot b}{(ab) \cdot a \cdot b} = \frac{b - a}{a^{2} b^{2}} \ldotp ...\[\frac{(\frac{1}{x} + 1) \cdot x}{(\frac{1}{x}) \cdot x} = \frac{1 + x}{3}, \nonumber \] \[\frac{(\frac{1}{a} - \frac{1}{b}) \cdot a \cdot b}{(ab) \cdot a \cdot b} = \frac{b - a}{a^{2} b^{2}} \ldotp \nonumber \] \[\frac{2 - \frac{1}{x}}{1 + \frac{1}{x}}, \qquad \frac{\frac{1}{x+h} + 3}{\frac{1}{x+h}}, \qquad \frac{1}{\frac{1}{a} + \frac{1}{b}}, \qquad \frac{\frac{1}{x+a} - \frac{1}{x}}{a} \ldotp \nonumber \]
  • https://math.libretexts.org/Courses/Teachers_College_Columbia_University/Book%3A_Mathematics_for_Elementary_Teachers_(Manes)/06%3A_Fractions/6.13%3A_Algebra_Connections
    \[\frac{(\frac{1}{x} + 1) \cdot x}{(\frac{1}{x}) \cdot x} = \frac{1 + x}{3},\] \[\frac{(\frac{1}{a} - \frac{1}{b}) \cdot a \cdot b}{(ab) \cdot a \cdot b} = \frac{b - a}{a^{2} b^{2}} \ldotp\] \[\frac{2...\[\frac{(\frac{1}{x} + 1) \cdot x}{(\frac{1}{x}) \cdot x} = \frac{1 + x}{3},\] \[\frac{(\frac{1}{a} - \frac{1}{b}) \cdot a \cdot b}{(ab) \cdot a \cdot b} = \frac{b - a}{a^{2} b^{2}} \ldotp\] \[\frac{2 - \frac{1}{x}}{1 + \frac{1}{x}}, \qquad \frac{\frac{1}{x+h} + 3}{\frac{1}{x+h}}, \qquad \frac{1}{\frac{1}{a} + \frac{1}{b}}, \qquad \frac{\frac{1}{x+a} - \frac{1}{x}}{a} \ldotp\]
  • https://math.libretexts.org/Courses/College_of_the_Desert/College_of_the_Desert_MATH_011%3A_Math_Concepts_for_Elementary_School_Teachers__Number_Systems/08%3A_Fractions/8.12%3A_Algebra_Connections
    \[\frac{(\frac{1}{x} + 1) \cdot x}{(\frac{1}{x}) \cdot x} = \frac{1 + x}{3}, \nonumber \] \[\frac{(\frac{1}{a} - \frac{1}{b}) \cdot a \cdot b}{(ab) \cdot a \cdot b} = \frac{b - a}{a^{2} b^{2}} \ldotp ...\[\frac{(\frac{1}{x} + 1) \cdot x}{(\frac{1}{x}) \cdot x} = \frac{1 + x}{3}, \nonumber \] \[\frac{(\frac{1}{a} - \frac{1}{b}) \cdot a \cdot b}{(ab) \cdot a \cdot b} = \frac{b - a}{a^{2} b^{2}} \ldotp \nonumber \] \[\frac{2 - \frac{1}{x}}{1 + \frac{1}{x}}, \qquad \frac{\frac{1}{x+h} + 3}{\frac{1}{x+h}}, \qquad \frac{1}{\frac{1}{a} + \frac{1}{b}}, \qquad \frac{\frac{1}{x+a} - \frac{1}{x}}{a} \ldotp \nonumber \]
  • https://math.libretexts.org/Courses/Hartnell_College/Mathematics_for_Elementary_Teachers/11%3A_Fraction_Operations/11.11%3A_Algebra_Connections
    \[\frac{(\frac{1}{x} + 1) \cdot x}{(\frac{1}{x}) \cdot x} = \frac{1 + x}{3},\] \[\frac{(\frac{1}{a} - \frac{1}{b}) \cdot a \cdot b}{(ab) \cdot a \cdot b} = \frac{b - a}{a^{2} b^{2}} \ldotp\] \[\frac{2...\[\frac{(\frac{1}{x} + 1) \cdot x}{(\frac{1}{x}) \cdot x} = \frac{1 + x}{3},\] \[\frac{(\frac{1}{a} - \frac{1}{b}) \cdot a \cdot b}{(ab) \cdot a \cdot b} = \frac{b - a}{a^{2} b^{2}} \ldotp\] \[\frac{2 - \frac{1}{x}}{1 + \frac{1}{x}}, \qquad \frac{\frac{1}{x+h} + 3}{\frac{1}{x+h}}, \qquad \frac{1}{\frac{1}{a} + \frac{1}{b}}, \qquad \frac{\frac{1}{x+a} - \frac{1}{x}}{a} \ldotp\]

Support Center

How can we help?