Search
- Filter Results
- Location
- Classification
- Include attachments
- https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Nguyen)/06%3A_Appendices/6.01%3A_Trigonometric_Identities\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 ...\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 x = \dfrac{1- \cos 2x}{2}\) \(\sin (-x) = -\sin x\) \(\cos(-x) = \cos x\) \(\tan (-x) = -\tan x\) \(\sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x\) \(\cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x\) \(\sin(\pi - x) = \sin x\) \(\cos(\pi - x) = -\cos x\) \(\tan(\pi - x) = -\tan x\)
- https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Everett)/06%3A_Appendices/6.01%3A_Trigonometric_Identities\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 ...\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 x = \dfrac{1- \cos 2x}{2}\) \(\sin (-x) = -\sin x\) \(\cos(-x) = \cos x\) \(\tan (-x) = -\tan x\) \(\sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x\) \(\cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x\) \(\sin(\pi - x) = \sin x\) \(\cos(\pi - x) = -\cos x\) \(\tan(\pi - x) = -\tan x\)
- https://math.libretexts.org/Courses/Penn_State_University_Greater_Allegheny/Math_140%3A_Calculus_1_(Gaydos)/06%3A_Appendices/6.04%3A_Trigonometric_Identities\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 ...\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 x = \dfrac{1- \cos 2x}{2}\) \(\sin(α + β) = \sin(α) \cos(β) + \cos(α) \sin(β)\) \(\sin(α - β) = \sin(α) \cos(β) - \cos(α) \sin(β)\) \(\sin (-x) = -\sin x\) \(\cos(-x) = \cos x\) \(\sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x\) \(\cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x\)
- https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Tran)/06%3A_Appendices/6.01%3A_Trigonometric_Identities\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 ...\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 x = \dfrac{1- \cos 2x}{2}\) \(\sin (-x) = -\sin x\) \(\cos(-x) = \cos x\) \(\tan (-x) = -\tan x\) \(\sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x\) \(\cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x\) \(\sin(\pi - x) = \sin x\) \(\cos(\pi - x) = -\cos x\) \(\tan(\pi - x) = -\tan x\)
- https://math.libretexts.org/Courses/Reedley_College/Differential_Equations_and_Linear_Algebra_(Zook)/16%3A_Appendices/16.01%3A_Trigonometric_Identities\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 ...\(\cos^2 x + \sin^2 x = 1\) \(\sec^2 x - \tan^2 x = 1\) \(\sin 2x = 2 \sin x \cos x\) \(\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1\) \(\cos^2 x = \dfrac{1+ \cos 2x}{2}\) \(\sin^2 x = \dfrac{1- \cos 2x}{2}\) \(\sin (-x) = -\sin x\) \(\cos(-x) = \cos x\) \(\tan (-x) = -\tan x\) \(\sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x\) \(\cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x\) \(\sin(\pi - x) = \sin x\) \(\cos(\pi - x) = -\cos x\) \(\tan(\pi - x) = -\tan x\)