If the values of the function \(f(x)\) approach the real number \(L\) as the values of \(x\) (where \(x<a\)) approach the number \(a\), then we say that \(L\) is the limit of \(f(x)\) as \(x\) approac...If the values of the function \(f(x)\) approach the real number \(L\) as the values of \(x\) (where \(x<a\)) approach the number \(a\), then we say that \(L\) is the limit of \(f(x)\) as \(x\) approaches \(a\) from the left. If the values of the function \(f(x)\) approach the real number \(L\) as the values of \(x\) (where \(x>a\)) approach the number \(a\), then we say that \(L\) is the limit of \(f(x)\) as \(x\) approaches \(a\) from the right.