Also, we have the option of replacing the original expression for \(u\) after we find the antiderivative, which means that we do not have to change the limits of integration. \[ \begin{align*}\dfrac{1...Also, we have the option of replacing the original expression for \(u\) after we find the antiderivative, which means that we do not have to change the limits of integration. \[ \begin{align*}\dfrac{1}{2}∫^{π/2}_0\,dθ+\dfrac{1}{2}∫^{π/2}_0 \cos 2θ\,dθ &=\dfrac{1}{2}∫^{π/2}_0\,dθ+\dfrac{1}{2}\left(\dfrac{1}{2}\right)∫^π_0 \cos u \,du \\[4pt] &=\dfrac{θ}{2}\,\bigg|^{θ=π/2}_{θ=0}+\dfrac{1}{4}\sin u\,\bigg|^{u=θ}_{u=0} \\[4pt] &=\left(\dfrac{π}{4}−0\right)+(0−0)=\dfrac{π}{4} \end{align*}\]