xa⋅xb=xa+b Since x−n=1xn, then x−3=1x3 and thus 5x3=5x−3. \[\begin{align*} x^{-4/3} & = \frac{1}{x^{4/3}} \\ & = \frac{1}{...xa⋅xb=xa+b Since x−n=1xn, then x−3=1x3 and thus 5x3=5x−3.x−4/3=1x4/3=1(x1/3)4(since 43=4⋅13)=1(3√x)4(using the radical equivalence)
Since x−n=1xn, then x−3=1x3 and thus 5x3=5x−3. \begin{align*} x^{-4/3} & = \frac{1}{x^{4/3}} \\ & = \frac{1}{\left(x^{1/3}\right)^4} \qu...Since x−n=1xn, then x−3=1x3 and thus 5x3=5x−3.x−4/3=1x4/3=1(x1/3)4(since 43=4⋅13)=1(3√x)4(using the radical equivalence)
Since x−n=1xn, then x−3=1x3 and thus 5x3=5x−3. \begin{align*} x^{-4/3} & = \frac{1}{x^{4/3}} \\ & = \frac{1}{\left(x^{1/3}\right)^4} \qu...Since x−n=1xn, then x−3=1x3 and thus 5x3=5x−3.x−4/3=1x4/3=1(x1/3)4(since 43=4⋅13)=1(3√x)4(using the radical equivalence)
xa⋅xb=xa+b Since x−n=1xn, then x−3=1x3 and thus 5x3=5x−3. \[\begin{align*} x^{-4/3} & = \frac{1}{x^{4/3}} \\ & = \frac{1}{...xa⋅xb=xa+b Since x−n=1xn, then x−3=1x3 and thus 5x3=5x−3.x−4/3=1x4/3=1(x1/3)4(since 43=4⋅13)=1(3√x)4(using the radical equivalence)