\(\begin{array} {ll} {} &{\left(\frac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\frac{a}{b}\right)^m=\frac{a^m}{b^m}.} &{\frac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use the...\(\begin{array} {ll} {} &{\left(\frac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\frac{a}{b}\right)^m=\frac{a^m}{b^m}.} &{\frac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use the Product to a Power Property, }(ab)^m=a^mb^m.} &{\frac{4^2(p^{−3})^2}{(q^2)^2}} \\ {\text{Simplify using the Power Property, }(a^m)^n=a^{m·n}.} &{\frac{16p^{−6}}{q^4}} \\ {\text{Use the definition of negative exponent.}} &{\frac{16}{q^4}·\frac{1}{p^6}} \\ {\text{Simplify.}} &{\frac{16}{p^6q^4}} \\ …