Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Courses/Georgia_State_University_-_Perimeter_College/MATH_2215%3A_Calculus_III/15%3A_Multiple_Integration/Double_Integrals_in_Polar_Coordinates
    \[\begin{align*} \iint_D r^2 \sin \, \theta \, r \, dr \, d\theta &= \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=1+\cos \theta} (r^2 \sin \, \theta) \,r \, dr \, d\theta \\ &= \frac{1}{4}\left.\int_{\t...Dr2sinθrdrdθ=θ=πθ=0r=1+cosθr=0(r2sinθ)rdrdθ=14θ=πθ=0[r4]|r=1+cosθr=0sinθdθ=14θ=πθ=0(1+cosθ)4sinθdθ=14[(1+cosθ)55]π0=85.
  • https://math.libretexts.org/Courses/Misericordia_University/MTH_226%3A_Calculus_III/Chapter_15%3A_Multiple_Integration/4.08%3A_Double_Integrals_in_Polar_Coordinates
    \[\begin{align*} \iint_D r^2 \sin \, \theta \, r \, dr \, d\theta &= \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=1+\cos \theta} (r^2 \sin \, \theta) \,r \, dr \, d\theta \\ &= \frac{1}{4}\left.\int_{\t...Dr2sinθrdrdθ=θ=πθ=0r=1+cosθr=0(r2sinθ)rdrdθ=14θ=πθ=0[r4]|r=1+cosθr=0sinθdθ=14θ=πθ=0(1+cosθ)4sinθdθ=14[(1+cosθ)55]π0=85.
  • https://math.libretexts.org/Courses/Montana_State_University/M273%3A_Multivariable_Calculus/15%3A_Multiple_Integration/Double_Integration_with_Polar_Coordinates/Double_Integrals_in_Polar_Coordinates
    \[\begin{align*} \iint_D r^2 \sin \, \theta \, r \, dr \, d\theta &= \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=1+\cos \theta} (r^2 \sin \, \theta) \,r \, dr \, d\theta \\ &= \frac{1}{4}\left.\int_{\t...Dr2sinθrdrdθ=θ=πθ=0r=1+cosθr=0(r2sinθ)rdrdθ=14θ=πθ=0[r4]|r=1+cosθr=0sinθdθ=14θ=πθ=0(1+cosθ)4sinθdθ=14[(1+cosθ)55]π0=85.

Support Center

How can we help?