Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Courses/De_Anza_College/Calculus_I%3A_Differential_Calculus/01%3A_Functions_and_Graphs
    In this chapter, we review all the functions necessary to study calculus. We define polynomial, rational, trigonometric, exponential, and logarithmic functions. We review how to evaluate these functio...In this chapter, we review all the functions necessary to study calculus. We define polynomial, rational, trigonometric, exponential, and logarithmic functions. We review how to evaluate these functions, and we show the properties of their graphs. We provide examples of equations with terms involving these functions and illustrate the algebraic techniques necessary to solve them. In short, this chapter provides the foundation for the material to come.
  • https://math.libretexts.org/Courses/De_Anza_College/Calculus_II%3A_Integral_Calculus/02%3A_Applications_of_Integration/2.09%3A_Calculus_of_the_Hyperbolic_Functions
    This page discusses differentiation and integration of hyperbolic functions and their inverses, emphasizing their calculus applications, particularly in modeling catenary curves. Key objectives includ...This page discusses differentiation and integration of hyperbolic functions and their inverses, emphasizing their calculus applications, particularly in modeling catenary curves. Key objectives include understanding derivatives, integrals, and their respective formulas for hyperbolic functions, as well as domain considerations for inverse functions. The text provides examples, exercises, and instructions for evaluating integrals using \(u\)-substitution.
  • https://math.libretexts.org/Courses/De_Anza_College/Introductory_Differential_Equations/03%3A_Higher_order_linear_ODEs/3.03%3A_The_Method_of_Undetermined_Coefficients_II/3.3E%3A_Exercises_for_Section_3.3
    This page discusses exercises for finding particular solutions to second-order linear differential equations with variable coefficients, including forms involving trigonometric and exponential functio...This page discusses exercises for finding particular solutions to second-order linear differential equations with variable coefficients, including forms involving trigonometric and exponential functions. It covers the derivation and verification of key formulas, establishing conditions for polynomial functions as solutions, and validates theorems connecting polynomial equations to solutions.

Support Center

How can we help?