Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.1: Ordinary Differential Equations

( \newcommand{\kernel}{\mathrm{null}\,}\)

ODE’s are equations involving an unknown function and its derivatives, where the function depends on a single variable, e.g., the equation for a particle moving at constant velocity,

ddtx(t)=v,

which has the well known solution x(t)=vt+x0. The unknown constant x0 is called an integration constant, and can be determined if we know where the particle is located at time t=0. If we go to a second order equation (i.e., one containing the second derivative of the unknown function), we find more integration constants: the harmonic oscillator equation

d2dt2x(t)=ω2x(t)

has as solution x=Acosωt+Bsinωt,

which contains two constants.

As we can see from the simple examples, and as you well know from experience, these equations are relatively straightforward to solve in general form. We need to know only the coordinate and position at one time to fix all constants.


This page titled 1.1: Ordinary Differential Equations is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Niels Walet via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?