Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

2.E: Calculus in the 17th and 18th Centuries (Exercises)

  • Page ID
    8274
  • [ "article:topic", "authorname:eboman" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q1

    Use the geometric series to obtain the series 

    \[\begin{align*} \ln (1+x) &= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots \\ &= \sum_{n=0}^{\infty }\frac{(-1)^n}{n+1}x^{n+1} \end{align*}\]

    Q2

    Without using Taylor’s Theorem, represent the following functions as power series expanded about \(0\) (i.e., in the form \(\sum_{n=0}^{\infty }a_n x^n\)).

    1. \(\ln (1 - x^2)\)
    2. \(\frac{x}{1 + x^2}\)
    3. \(\arctan (x^3)\)
    4. \(\ln (2 + x)\)  [Hint: \(2 + x = 2\left (1 + \frac{x}{2} \right )\)]

    Q3

    Let \(a\) be a positive real number. Find a power series for \(a^x\) expanded about \(0\).  [Hint: \(a^x = e^{\ln (a^x)}\)].

    Q4

    Represent the function \(\sin x\) as a power series expanded about a (i.e., in the form \(\sum_{n=0}^{\infty } a_n (x - a)^n\)). n=0 an (x−a)n). [Hint: \(\sin x = \sin (a + x - a)\)].

    Q5

    Without using Taylor’s Theorem, represent the following functions as a power series expanded about a for the given value of a (i.e., in the form \(\sum_{n=0}^{\infty } a_n (x - a)^n\).

    1. \(\ln x, a = 1\)
    2.  \(e^x, a = 3\)
    3.  \(x^3 + 2x^2 + 3 , a = 1\)
    4. \(\frac{1}{x}, a = 5\)

    Q6

    Evaluate the following integrals as series.

    1. \(\int_{x=0}^{1} e^{x^2}dx\)
    2. \(\int_{x=0}^{1} \frac{1}{1 + x^4}dx\)
    3. \(\int_{x=0}^{1} \sqrt[3]{1 - x^3}dx\)

    Contributor

    • Eugene Boman (Pennsylvania State University) and Robert Rogers (SUNY Fredonia)