Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

15.1: Defining Regular Equivalence


\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

Regular equivalence is the least restrictive of the three most commonly used definitions of equivalence. It is, however, probably the most important for the sociologist. This is because the concept of regular equivalence, and the methods used to identify and describe regular equivalence sets correspond quite closely to the sociological concept of a "role". The notion of social roles is a centerpiece of most sociological theorizing.

Formally, "Two actors are regularly equivalent if they are equally related to equivalent others." (Borgatti, Everett, and Freeman, 1996: 128). That is, regular equivalence sets are composed of actors who have similar relations to members of other regular equivalence sets. The concept does not refer to specific other actors, or to presence in similar sub-graphs; actors are regularly equivalent if they have similar ties to any members of other sets.

The concept is actually more easy to grasp intuitively than formally. Susan is the daughter of Inga. Deborah is the daughter of Sally. Susan and Deborah form a regular equivalence set because each has a tie to a member of the other set. Inga and Sally form a set because each has a tie to a member of the other set. In regular equivalence, we don't care which daughter goes with which mother; what is identified by regular equivalence is the presence of two sets (which we might label "mothers" and "daughters"), each defined by its relation to the other set. Mothers are mothers because they have daughters; daughters are daughters because they have mothers.