Skip to main content
$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2: Induction and Recursion

If you are unfamiliar with the Principle of Mathematical Induction, you should read Appendix B. The principle of mathematical induction states that In order to prove a statement about an integer $$n$$, if we can 1. Prove the statement when n = b, for some fixed integer b, and 2. Show that the truth of the statement for $$n = k − 1$$ implies the truth of the statement for $$n = k$$ whenever $$k > b$$, then we can conclude the statement is true for all integers $$n ≥ b.$$

Thumbnail: A drawing of a graph. Image used with permission (Public Domain; AzaToth).