Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

2.2: Quasilinear Equations

  • Page ID
    2134
  • [ "article:topic", "showtoc:no" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Here we consider the equation

    \begin{equation}
    \label{quasi}
    a_1(x,y,u)u_x+a_2(x,y,u)u_y=a_3(x,y,u).
    \end{equation}

    The inhomogeneous linear equation

    $$a_1(x,y)u_x+a_2(x,y)u_y=a_3(x,y)$$

    is a special case of (\ref{quasi}).

    One arrives at characteristic  equations \(x'=a_1,\ y'=a_2,\ z'=a_3\)  from (\ref{quasi}) by the same arguments as in the case of homogeneous linear equations in two variables. The additional equation \(3\) follows from

    \begin{eqnarray*}
    z'(\tau)&=&p(\lambda)x'(\tau)+q(\lambda)y'(\tau)\\
    &=&pa_1+qa_2\\
    &=&a_3,
    \end{eqnarray*}

    see also Section 2.3, where the general case of nonlinear equations in two variables is considered.

    Contributors